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Abstract

Platforms that intermediate trades such as Amazon, Airbnb, and eBay play

a regulatory role in deciding how to govern the “marketplaces” they create. We

propose a framework to analyze a platform’s non-price governance designs and its

incentive to act in a welfare-enhancing manner. We show that the platform’s gov-

ernance designs can be distorted towards inducing insufficient or excessive seller

competition, depending on the nature of the fee instrument employed by the plat-

form. These results are illustrated with micro-founded applications to a platform’s

control over seller entry, quality standards, and search design choices.
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1 Introduction

A growing number of platform intermediaries run “marketplaces” through which buyers

and sellers trade. Well-known examples include third-party marketplaces Amazon and

eBay, accommodation sharing site Airbnb, video game console such as Sony PS4, as

well as brick-and-mortar shopping malls. Much like a government regulator that runs

an economy, a platform regulates the behavior of platform users through its governance

designs. Interpreting a platform this way highlights its governance role beyond just setting

prices, as pointed out by the EU Competition Policy Report (Crémer, de Montjoye, and

Schweitzer, 2019):

“Platforms play a form of regulatory role as they determine the rules accord-

ing to which their users, including consumers and business users, interact...

Moreover, we would expect that in many cases, platforms have incentives to

write good rules to make their platform more valuable to users. However, this

might not always be the case...”

Given the role of a platform to govern participants in its marketplace, a natural

question is whether a profit-maximizing platform will act in a welfare-maximizing way.

In this paper, we provide a framework to examine the incentives and trade-offs that a

platform faces in its governance designs, and study how its designs can be distorted away

from what is optimal for the entire marketplace or from a total welfare perspective.

In practice, the scope of platform governance is wide. We focus on governance designs

that have the following primary features: (i) they (indirectly) influence the gross trans-

actional value generated on the platform for buyers, and (ii) they influence the extent

of on-platform seller competition. These include decisions regarding entry, quality con-

trol, and on-platform search friction. For example, shopping malls regulate the number

of competing tenants by carefully selecting which retailers to accept for each category

as well as specifying their minimum opening hours. Airbnb implements quality control

by continuously tweaking its peer-review system to induce honest user feedback and re-

moving listings subject to excessive user complaints, while similar practices are used by

Amazon and eBay. In addition, these platforms often actively redesign their user inter-

face and search algorithm to facilitate the user experience, which ultimately alters the

on-platform search friction faced by consumers.

Using our framework, we compare the optimal governance design by a profit-maximizing

platform against the governance design maximizing welfare in order to examine the source

of welfare distortion in platform governance. We identify a class of models where the sign

of the welfare distortion can be related precisely to the fee instrument employed by the

platform. In our framework, there is a platform that facilitates transactions between buy-

ers and price-setting sellers, and it chooses its governance design and the fee(s) charged
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to sellers. Each buyer wants to buy one unit of a single product and purchases it from

the seller of its choice. We initially focus on the case in which the platform fee is purely

transaction-based, which can be either a proportional fee or a per-transaction fee.

With proportional fees, which are used by many different online platforms, we show

that the platform’s profit can be written as a weighted sum of seller profit and transaction

volume, and so its governance design aims to balance the interest of the two parties. When

the sellers have low marginal costs, the platform’s profit — which is proportional to seller

revenue — approximates seller profit so that the platform benefits from a governance

design that relaxes seller competition and sustains a high markup for sellers. Therefore,

the profit-maximizing governance design is distorted towards relaxing on-platform seller

competition as compared to the welfare benchmark. However, as the sellers’ marginal

cost increases, the platform’s profit begins to diverge from seller profit given that it

does not internalize sellers’ marginal cost. Once the marginal cost is sufficiently high,

the platform’s incentive is reversed and it now prefers to set a governance design that

maximizes transaction volume, so that its design becomes distorted towards intensifying

seller competition instead. We further show this distortion can lead to insufficient gross

transactional value generated for buyers, depending on the correlation between the extent

of on-platform seller competition and the transactional value that is induced by a change

in the platform’s governance design.

With per-transaction fees, the platform’s profit increases with total transaction vol-

ume so that it sets its governance design to maximize this volume. This over-emphasis on

transaction volume means that the platform can potentially fail to balance the dual roles

of governance (i.e. influencing transactional surplus generated and affecting the extent

of on-platform competition) in a welfare-maximizing manner. Indeed, we find that the

profit-maximizing design is, in general, distorted towards intensifying on-platform seller

competition as compared to the welfare benchmark. This distortion arises provided the

correlation between the extent of on-platform seller competition and the transactional

value for buyers is sometimes negative.

We then extend our analysis by allowing the platform to charge participation fees

on sellers, e.g. listing fees that many online marketplaces charge on sellers. With pure

participation fees, the platform profit becomes proportional to the joint industry (the

platform and sellers) profit, and its governance design is distorted towards relaxing on-

platform seller competition to maximize this joint profit. A similar intuition applies

when the platform charges seller two-part tariffs (i.e. when both transaction-based fees

and participation fees are feasible).

Our results thus motivate the following taxonomy for platform fee instruments (or

revenue-generating models in general). On one hand, there are volume-aligned fee in-

struments (e.g. per-transaction fee, and proportional fee when seller marginal cost is

low), in which the platform prefers governance designs that intensify seller competition
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and increase transaction volume. On the other hand, there are seller-aligned fee instru-

ments (e.g. proportional fees when seller marginal cost is high, seller participation fees,

and two-part tariffs), in which the platform prefers governance designs that relax seller

competition and increase seller surplus instead. This taxonomy provides a simple way

to relate platform fee instruments with the directions of welfare distortion in platform

governance that our framework identifies.

The above results are established in a general setting without imposing any specific

model of seller competition or platform governance. To illustrate the implications from

the analysis, we then apply our framework to three applications of platform governance:

• Platform regulation of seller entry in the discrete choice model of Perloff and Salop

(1985): Restricting entry relaxes seller competition, implying that a platform with

seller-aligned fee instruments may over-restrict seller entry (relative to the welfare

benchmark) to sustain seller markups.

• Imposition of a minimum quality standard in the consumer search environment of

Eliaz and Spielger (2011): Raising the quality standard intensifies seller competition

because a better seller quality pool means that consumers spend less time searching

for good-quality products, which effectively means a lower search cost and hence

a more price-elastic demand for each seller. The result suggests that a platform

with seller-aligned fee instruments will impose a quality standard that is too low

to sustain seller markup, while a platform with volume-aligned fee instruments will

impose the highest quality standard (consistent with the welfare benchmark).

• On-platform search friction: A design choice that reduces search cost will intensify

seller competition in the random search model of Wolinsky (1986), but it may relax

seller competition in the price-directed search model of Choi et al. (2018). This

means that whether a platform has excessive or insufficient incentive to reduce

search costs depends not only on the fee instruments employed, but also on the

search environment considered.

The rest of the paper proceeds as follows. Section 1.1 surveys the relevant literature.

Section 2 lays out a general framework that nests various models of seller competition

and platform governance models. Section 3 and Section 4 analyze the general framework

under a variety of platform fee instruments. Section 5 applies the insights obtained to

discuss specific models of platform governance. Section 6 discusses model extensions.

Finally, Section 7 concludes. All omitted proofs and derivations are relegated to the

Appendix.
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1.1 Relation to the literature

Most of the existing literature on multi-sided platforms has been focused on pricing

aspects (Caillaud and Jullien, 2003; Rochet and Tirole, 2003, 2006; Armstrong, 2006;

Hagiu, 2006; Armstrong and Wright, 2007; Damiano and Li, 2007; Weyl, 2010; Jullien

and Pavan, 2019). Our work contributes to the recent efforts that expand the formal

study of multi-sided platforms beyond pricing into the domain of platform governance.

Among the platform governance design decisions investigated in the strategy and eco-

nomics literature are: platform ownership (Nocke et al, 2007), platform openness and

innovation (Boudreau, 2010; Parker and Van Alstyne, 2018), intellectual property shar-

ing (Niculescu, 2018), introduction of platform first-party content (Hagiu and Spulber,

2013), and delegation of control rights (Hagiu and Wright, 2015a; 2015b; 2018). Most

of these works focus on how the platform governance designs help to generate additional

surplus on platforms by encouraging innovations by third-party developers or coordinat-

ing end-user behavior. Except Nocke et al. (2007), these works do not investigate the role

of governance in influencing on-platform price competition between sellers. On the other

hand, they explore interesting innovation and coordination decisions faced by platforms

which our framework of governance does not capture.

The focus on on-platform seller competition is also at the heart of Nocke et al. (2007),

Belleflamme and Peitz (2019), and Karle et al. (2019). In these papers, membership

pricing by platforms affects the number of participating sellers hence the extent of seller

competition. In equilibrium, different levels of seller markup and market outcomes are

induced by platforms’ pricing, depending on various exogenous factors such as platform

ownership, the strength of cross-network effect, or the extent of product differentiation

among sellers. In contrast, the current paper explores how the fee instruments employed

by the platform shape its incentive in governance designs.

Our emphasis on the role of different platform fee instruments (in particular, transaction-

based fees) relates to the works by Shy and Wang (2011), Johnson (2017), and Wang

and Wright (2017), among others. These works compare constant per-transaction fees

against proportional fees, and they show the superiority of the latter in mitigating the

double marginalization problem or in facilitating price discrimination across product cat-

egories. These works (and ours) do not address the question of the optimal instrument

to use, which can reflect other considerations, such as technological limitations (such as

the inability to monitor the price and/or quantity of transactions) or coordination is-

sues (participation-based fees may be infeasible when platforms face a chicken-and-egg

problem to launch). For this line of inquiry, see Hagiu and Wright (2018).

In our general framework of platform governance, we have in mind decisions regarding

quality control, entry regulation, as well as search and interface design. This brings our

framework closer to recent studies on each of these specific topics. However, as described
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below, our research questions and the mechanisms driving our results significantly differ

from each of these studies:

� Quality control. Jeon and Rochet (2010) analyzes how the quality standard

decisions of an academic journal depend on whether it operates as an “open access”

journal (charging nothing to readers) or a standard subscription-based journal. They

show that the resulting quality standard is too high relative to welfare benchmarks if the

journal charges readers for access, while the standard is too low if the journal is open

access. Bouvard and Levy (2018) consider a certification intermediary that can invest in

the quality of its certification technology, and they show the intermediary may invest too

little in quality when its revenue relies on participation by low-quality firms. In contrast to

these works, however, we consider a marketplace setting in which a platform intermediates

trades between consumers and multiple competing price-setting sellers. We show that the

incentive to manipulate on-platform competition provides another explanation for why

platforms may set quality controls that are either too restrictive or too permissive.

� Platform search diversion and obfuscation. Hagiu and Jullien (2011) and

White (2013) consider a platform that can garble the consumer search process in order

to divert consumers towards the seller that generates a higher revenue for the platform.

In doing so the platform trades off between earning a higher margin per consumer versus

less consumer participation. However, such search diversion has no impact on the price-

competition among sellers, which is the main trade-off in our framework. Casner (2019)

analyze a platform’s incentive to increase consumer search cost (i.e., to obfuscate search)

in an on-platform consumer search environment based on the random sequential search

model of Wolinsky (1986). He independently obtains one of the same findings — a

platform with a proportional fee has an incentive to obfuscate search to sustain seller

markups. However, Casner’s analysis is restricted to an exogenously fixed proportional

fee on sellers, whereas our framework endogenizes the level of the platform’s fee and

also considers other fee instruments under which the platform may have no incentive

to obfuscate search. Moreover, our framework is readily applicable to study other non-

random search environments, in particular, the price-directed search environment (e.g.

Armstrong and Zhou, 2011; Armstrong, 2017; Choi et al., 2018), whereby the platform’s

incentive to obfuscate search can get reversed.

� Entry regulation and variety provision. Casadesus-Masanell and Halaburda

(2010) provide a model of a two-sided platform connecting users with “applications” that

themselves exhibit positive network externalities. Veiga (2018) considers a one-sided

platform that can price-discriminate by segregating its users into different “sub-groups”

that each exhibits positive network externalities. In these papers, the platform may find

it profitable to restrict access in order to facilitate coordination among end-users at the

level of applications or subgroups. In contrast, in our framework the platform restricts

access (of sellers) to increase sellers’ markup whenever its fee instrument aligns its interest
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with them.

2 Model setup

The environment consists of a continuum of unit-demand buyers, multiple sellers (can

be finite or a continuum), and a platform that enables transactions between buyers and

sellers. In what follows, we first present a general framework that is meant to encompass

several different models of platform governance. We then illustrate the framework with

three specific micro-foundations in Section 2.1.

Governance design. The platform chooses a governance design a ∈ Θ, where Θ ⊆ R
is a compact (possibly discrete and finite) set. The design a affects the gross transactional

value V (a) that each buyer obtains from joining the platform and purchasing items

from the sellers, where V (a) is continuous for all a ∈ Θ.1 We normalize to zero the

buyer’s utility from the outside option. We interpret a as, among other interpretations,

regulating entry, quality control, and design or technology choices. We allow V (a) to

be non-monotone, while noting that in most cases it is natural to think of V (a) as an

increasing function: admitting more sellers increases product variety; raising the quality

standard increases expected product value; improving search quality increases buyers’

reservation value. To highlight our main points in a simple fashion, we assume that the

platform faces no fixed and marginal costs, including no cost of a higher (or lower) a.

Seller pricing. For each design a chosen by the platform, sellers engage in price

competition to attract buyers. Sellers have a constant marginal cost c > 0. Suppose we

ignore any platform fees at the moment. Without imposing any specific micro-foundation,

we posit that the seller competition results in a symmetric equilibrium price

p = c+M (a) . (1)

Here, M (a) > 0 is a markup function that captures the equilibrium markup that sellers

earn. We assume that M (a) is continuous for all a ∈ Θ. With an arbitrary form of

M (a), the equilibrium price equation (1) is consistent with those arising from various

micro-foundations with unit-demand consumers, e.g. the Perloff-Salop (1985) discrete

choice model, the circular city model of Salop (1979), spokes model of Chen and Riordan

(2007), the sequential search model of Wolinsky (1986) and Anderson and Renault (1999),

and the price-directed search model of Choi et al. (2018), among others. The reduced-

form formulation allows us to concisely capture the effect of platform governance on how

the seller competition unfolds by specifying how M (a) changes with a.

Buyers and volume of transactions. We let the total number of transactions (or

1Note V (a) is a continuous function by definition whenever Θ is a discrete set.

7



aggregate demand) faced by the platform be

Q = Q (V (a)− p) , (2)

where Q is strictly increasing, continuously differentiable, and log-concave. For micro-

foundations where the product market is not fully covered, Q represents the mass of

consumers who forgo the outside option and purchase from one of the sellers. For micro-

foundations with complete market coverage (where the aggregate demand, by default,

is equal to the total mass of buyers), Q represents the mass of buyers that participate

on the platform. To make Q elastic in the latter case, one can follow the approach of

Edelman and Wright (2015a) by assuming that there is a continuum of buyers each of

whom needs to incur a cost d to join the platform, and d is heterogenous across buyers

so that only those with d < V (a)− p would participate on the platform.

Platform fees. The platform levies a fee on sellers for each transaction, which can

be a per-transaction fee τ , or it can be a proportional fee r (also known as a revenue

sharing contract).2 For notational brevity, we assume that the platform does not charge

any transaction fee to buyers, which is without loss of generality due to the tax neutrality

principle (Weyl and Farbinger, 2013).3

Under a per-transaction fee, the fee τ is essentially an additional marginal cost to

sellers, so that the equilibrium price equation in (1) becomes

p = c+ τ +M (a) .

Under a proportional fee, for each unit of sales revenue generated, a seller receives its

share 1− r while the platform keeps the remaining share r. For any given r, each seller’s

sales margin can be written as (1− r)
(
p− c

1−r

)
. Ignoring the multiplicative factor, the

seller sales margin is p − c
1−r < p − c reflecting that a seller keeps only a share of its

revenue but bears all of its costs of product, so that the seller acts as if its “effective”

marginal cost is c
1−r . Hence, the equilibrium price equation in (1) becomes

p =
c

1− r
+M (a) .

Discussion of modelling features. In (1), we implicitly assume that the M (a)

function is a primitive that does not depend on p. This implies a full pass-through of

marginal cost to price, so that any transaction fee charged by the platform to sellers has

2The possibility of participation-based fee is explored in Section 4.2.
3In the marketplace environments we study, the standard principle of tax-neutrality - whereby sellers

take into account the buyer-side fees when they set prices - implies that aggregate demand does not
depend directly on the decomposition of platform fees between buyer fees and seller fees. Even if such
neutrality does not hold, in many of the platform examples we have in mind, buyers do not face any
fees, suggesting our focus purely on seller fees, is anyway a realistic assumption.
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no impact on the level of markup that sellers earn. In Section 6, we discuss how this

assumption can be relaxed by allowing the markup function to depend on p, in which case

p becomes implicitly defined by p = c+M (p, a). We also explore in the same section the

possibility of generalizing the aggregate demand function Q in (2) to Q = Q (V (a) , p).

The assumption of costless governance design shuts down the well-known Spence

(1975) distortion, that arises from the fact that a monopolist cares about the valuation

of marginal users when increasing its product quality (or other product attributes) while

the social planner cares about the valuation of average users. Given that an increase

in product quality is always preferable by both marginal users and average users, when

quality improvement is costless both the monopolist and the social planner will set the

highest possible quality, and there will be no Spence distortion. Thus, the costless design

assumption allows us to isolate the new form of welfare distortion that arises in this

platform setting. Furthermore, in some applications such as website design choices, it

may not be obvious how costs should vary with the level of a, so the costless design

assumption is quite natural.

2.1 Micro-foundations

In this subsection, we provide three simple micro-foundations that fit the general frame-

work presented above, whereby each example corresponds to a different aspect of platform

governance design. To keep the exposition brief, we focus on showing how each example

maps into the general framework, and relegate the detailed derivations to Section A of

the Online Appendix. We will return to these examples in Section 5 when we discuss the

implications from our analysis.

Example 1 Entry regulation and variety choice by platform (Perloff and Salop, 1985)

There is a continuum of unit-demand buyers and n ≥ 2 ex-ante symmetric and

horizontally-differentiated sellers. Let εi denote the random match value of a product i,

which is identically and independently realized across buyers and products for i = 1, ..., n.

Let F be the common cumulative distribution function (cdf) for all εi with log-concave

density function f .

The platform chooses the number of sellers admitted to the platform, which we denote

as a ∈ {2, ..., n}.4 After observing a, a buyer chooses whether to incur a joining cost d

to join the platform and learn the available products (specifically the match values and

prices), where d is randomly drawn from a distribution with log-concave cdf G. Let Q

denote the total number of participating buyers, then the demand faced by each admitted

4An alternative interpretation of entry regulation is the choice of the number of leads to show each
buyer. Choosing more leads allows more sellers to enter each buyer’s “consideration set”, so that it is
effectively equivalent to admitting more sellers to the platform.
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seller i is Q ×
∫∞

0
(1− F (ε− p+ pi)) dF (ε)a−1. Price competition among sellers lead to

symmetric equilibrium price of the form p = c+M (a), where the markup is

M (a) ≡ 1

a
∫∞

0
f (ε) dF a−1 (ε)

.

It follows from Anderson, de Palma, and Nesterov (1995) that M (a) is strictly decreasing

in a, reflecting that a higher number of sellers increases demand elasticity. Finally, a buyer

joins the platform if the expected gain from doing so,

V (a)− p ≡ E

(
max
i=1,...,a

{εi}
)
− p,

is greater than the joining cost. Thus, the total number of transactions isQ = G (V (a)− p).
Reflecting the usual logic of increased competition, an increase in a increases V (a) and

decreases M (a) in this model.

Example 2 Quality control by platform Eliaz and Spielger (2011).

There is a continuum of unit-demand buyers and a continuum of sellers. Each seller

i has quality qi ∈ [0, 1], which is distributed according to the cdf H. When a buyer is

matched with a seller of type qi, with probability qi the seller’s product is non-defective

and provides utility value z + εi where εi > 0 is a consumer-product match component

while z is a consumer-specific component invariant across products; With probability qi

the product is defective and provides only utility z. The values z and εi are identically

and independently drawn across buyers and product, with distribution functions G and F

and density functions g and f . All sellers face the same constant marginal cost c. Buyers

know z before engaging in search. They search on the platform sequentially with perfect

recall and they incur a search cost s > 0 each time they sample a seller. By sampling

seller i, a buyer learns the product price pi, the match value εi, and whether product i is

defective, but the buyer never observes seller type qi. The utility from a buyer’s outside

option of not purchasing yields zero utility.

The platform sets a minimum quality standard a ∈ [0, ā] ⊆ [0, 1], such that only

sellers with quality qi ≥ a are allowed to sell on the platform.5 When buyers search, they

only have access to the pool of sellers with qi ≥ a. Given that buyers do not observe each

seller’s quality but observe the platform’s choice of minimum quality standard, they infer

from a that the average quality of the seller pool is E (qi|qi ≥ a). Define a buyer’s search

5This can be done by screening out low-quality sellers, or by a commitment to remove problematic
listings. In practice, how strictly the platform’s ranking algorithm penalizes listings with poor reviews
will have a similar effect.
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reservation value V (a) implicitly as∫ ε̄

V

(ε− V ) dF (ε) =
s

E (qi|qi ≥ a)
. (3)

Notably, the “effective search cost” faced by consumers (right hand side of (3)) is de-

creasing in a. Following Weitzman (1979), the demand faced by a seller i is Q ×(
1−F (V (a)−p+pi)

1−F (V (a))

)
qi, and the resulting symmetric equilibrium price is p = c+M (a), where

M (a) ≡ 1− F (V (a))

f (V (a))
.

It can be shown that if a consumer ever initiates search then she never chooses the outside

option at any point during her search sequence, and she initiates search if and only if

z + V (a)− p ≥ 0. Therefore, the total number of transactions is Q = 1−G (p− V (a)).

Reflecting the standard effect of lowering search costs in a random consumer search setting

(e.g. Wolinsky, 1986), an increase in a increases V (a) and decreases M (a) in this model.

Example 3 Design and on-platform search cost

Consider the following adapted version of price-directed search model of Choi et al.

(2018).6 There is a continuum of unit-demand buyers and n ≥ 2 ex-ante symmetric and

horizontally-differentiated sellers. All sellers face the same constant marginal cost c and

set prices simultaneously. Buyers observe those prices and sequentially search for the

best product with a per-search cost s. A buyer’s net utility from buying a product i is

εi+zi−pi, where εi is the buyer’s prior match value for product i that the buyer observes

before inspecting the product, zi is the residual match value that is revealed to the buyer

only after inspecting the product, and pi is the product price. The match values εi and

zi are random and independent of each other, and they are identically and independently

drawn across buyers and products i = 1, .., n. Let F and H be the cdf of εi and zi, with

support over [−∞,∞] and [z, z̄] and log-concave density functions f and h respectively.

The platform can choose its search design a ∈ [0, ā], where a higher a corresponds

to a lower search cost for buyers (i.e., s = s (a) is strictly decreasing in a). To join the

platform a buyer must incur a joining cost d which is randomly drawn from a distribution

with log-concave cdf G. To utilize Weitzman (1979)’s solution for consumer search, define

reservation value z∗ as ∫ z̄

z∗
(zi − z∗) dH (zi) = s (a) .

Choi et al. (2018) provide an elegant characterization of each buyer’s eventual purchase

decision: for each i, define wi ≡ εi + min {zi, z∗}, then a buyer eventually purchases

6Another possible example is the random search model of Wolinsky (1986) and Anderson and Renault
(1999).
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product i if and only if wi − pi > wj − pj for all j 6= i. If we let H̄ denote the cdf of

the new random variable wi ≡ εi + min {zi, z∗} that is common for all i, and let h̄ be

its density function, then the symmetric equilibrium price in this environment can be

derived as p = c+M (a), where

M (a) ≡ 1/n∫∞
−∞ h̄ (w|a) dH̄n−1(w|a)

.

Note that the distribution function H̄ (wi|a) is conditional on a because the variable

wi depends on z∗, which in turns is decreasing in the search cost s (a). Finally, as a

direct corollary of Choi et al.’s characterization, the expected surplus for a buyer from

participating in the market is

V (a)− p ≡ E

(
max
i=1,...,n

{wi} |a
)
− p.

Thus, in the equilibrium the mass of participating buyers of buyers joining the platform

(and the total number of transactions) is Q = G (V (a)− p). Reflecting the standard

effect of lowering search costs in a price-directed search setting (e.g. Armstrong, 2017),

an increase in a increases both V (a) and M (a) in this model.7

3 Baseline analysis: exogenous platform fees

Recall that the platform sets its governance design and its fee level simultaneously. To

develop initial intuitions, in this section we analyze the general framework of Section 2

by assuming that the fee levels τ and r are exogenously fixed.8 By doing so we shut

down any distortion introduced by fee-setting decisions of the platform, which allows us

to highlight distortions in the platform’s governance designs. We first consider the case

of per-transaction fees (Section 3.1), and then the case of proportional fees (Section 3.2).

3.1 Per-transaction fees

When the platform charges a per-transaction fee τ > 0 to sellers, the equilibrium

price that arises from seller competition is p = c + τ + M (a). Consider a profit-

maximizing platform. Substituting for the seller equilibrium price, the platform’s profit is

τQ (V (a)−M (a)− c− τ). Without loss of generality we reformulate platform’s problem

7See also the discussion in Section 5 for a detailed explanation of this logic and how the logic compares
to the random search model of Wolinsky (1986).

8Alternatively, one may interpret the analysis in this section by considering the case that the fee
levels are chosen before the governance design decision. For example, there may be cases where fees are
adjusted less often than the governance choice, which is more flexible, for reasons outside the model.
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as choosing the level of seller markup m ∈ M (Θ) directly whereby each m is associated

with governance design a (m) = M−1 (m) and seller gross surplus v (m) ≡ V (a (m)):9

Π (m) = τQ (v (m)−m− c− τ) .

We will apply the same reformulation technique throughout the main text.

We denote mp ≡ arg maxm Π, where the superscript refers to “profit-maximization”.

It is immediate that

mp = arg maxm {v (m)−m} (4)

because the platform can enjoy a higher transaction volume (for any given τ) by increasing

v (m)−m.

To identify the source of distortion in the profit-maximizing governance choice, we con-

sider the welfare-maximization benchmark for comparison. Note that welfare-maximization

is equivalent to a pure value-creation benchmark (Boudreau and Hagiu, 2009), that is,

maximizing the total amount of economic value generated from user interactions on the

platform. Total welfare is defined as the sum of joint industry profit (the platform and

sellers) and buyers surplus. After substituting for the sellers’ equilibrium price, total

welfare (or total surplus generated) is written as

W (m) = (τ +m)Q (v (m)−m− c− τ) +

∫ v(m)−m−c−τ

−∞
Q (t) dt,

where the buyer (consumer) surplus is obtained by integrating the aggregate demand

from Q = 0 up to the marginal demand.10

Define mw ≡ arg maxmW , where the superscript refers to “welfare-maximization”.

Before proceeding, we note that this benchmark is welfare-maximizing only in a “partial”

sense given that the platform fees are assumed to be fixed. In Section 4, where we endog-

enize the platform fee-setting decision, we consider the “second-best” welfare benchmark

whereby there is a social planner that controls the governance design but does not control

the fee decision of the platform.

With per-transaction fees, we claim that a profit-maximizing platform will choose a

platform design that is associated with a higher level of seller competition (i.e. a lower

markup) than the design that maximize total welfare, i.e. mp ≤ mw. Note that if this

9The reformulation is valid whenever function M (a) is a bijection. In cases where the bijectivity does
not hold so that there are multiple a that solves m = M (a), we can simply select a that corresponds to
the highest V (a) and the analysis will continue to hold.

10This specific reduced-form buyer surplus representation relies on our assumption that the buyers’
outside option is normalized to zero. Our results would remain valid even if the outside option is some
non-zero constant; we only require that it is not a function of the governance design.
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were not the case and mp > mw, then

W (mw) ≤ (τ +mw)Q (v (mp)−mp − c− τ) +

∫ v(mp)−mp−c−τ

−∞
Q (t) dt

< (τ +mp)Q (v (mp)−mp − c− τ) +

∫ v(mp)−mp−c−τ

−∞
Q (t) dt

= W (mp) ,

where the first inequality follows from the definition of mp in (4), while the second inequal-

ity follows from the initial supposition that mp > mw. Obviously, W (mw) < W (mp)

contradicts the definition of mw, hence:

Proposition 1 (Exogenous per-transaction fees) Suppose the platform charges an exoge-

nous per-transaction fee τ . The profit-maximizing governance design induces excessive

on-platform competition (i.e. mp ≤ mw).

The economic intuition of Proposition 1 is easiest to understand if we assume that

m is a continuous variable over some compact interval. We first note that welfare-

maximization, whenever possible, calls for maximizing transactional value v (m) and min-

imizing seller markup m using a single decision instrument, while the profit-maximizing

platform seeks to do the same as well in an attempt to maximize transaction volume.

When v (m) and m move in opposite directions, there is no trade-off in the choice of

the optimal governance design from the perspectives of welfare-maximization and profit-

maximization.11 Decreasing m increases the transactional value and decreases the price

set by sellers, so that it is welfare-improving and profit-improving to keep doing so until

mp andmw reach the lowest possible level. There is no distortion in this case, as illustrated

in the first panel of Figure 1 below.

In any region where v (m) and m move in the same direction however, a trade-off

arises: if one attempts to increase the transactional value v (m), this would come with an

implicit “cost” — the cost of increasing the seller markup and hence price. This implicit

cost is greater from the perspective of a profit-maximizing platform because it focuses

on transaction volume (which decreases if price increases). However, from a welfare

perspective the said implicit cost is smaller because the loss in transaction volume (or

output) from a higher price is partially offset by the corresponding gain in seller surplus

(which increases if price increases). This implies that the welfare-maximizing design calls

for a higher v (m) compared to the profit-maximizing platform. As illustrated in the

second panel of Figure 1, there is a downward distortion mp < mw where the level of

seller competition is too high and the associated transactional value for buyers is too low

under profit-maximization.

11Note v (m) and m move in opposite directions if and only if V (a) and M (a) move in opposite
direction when a changes.
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Figure 1: Distortions in governance design with per-transaction fee

3.2 Proportional fees

The logic behind Proposition 1, that the platform’s profit (when choosing its governance

design) is aligned with the maximization of transaction volume, can be reversed when the

platform charges proportional fees instead. With a proportional fee r > 0, the equilibrium

price that arises from seller competition is

p =
c

1− r
+m. (5)

With a slight abuse of notation, we continue to denote platform’s profit and total welfare

as:

Π (m) = rpQ (v (m)− p)

W (m) = (p− c)Q (v (m)− p) +

∫ v(m)−p

−∞
Q (t) dt,

where p is given by (5).

After substituting in (5), the platform’s profit can be written as

1

r
Π (m) = mQ

(
v (m)−m− c

1− r

)
︸ ︷︷ ︸

proportional to seller surplus

+
c

1− r
Q

(
v (m)−m− c

1− r

)
︸ ︷︷ ︸

volume of transactions

. (6)

Equation (6) essentially decomposes the platform’s profit into two components. The first

component in (6) is proportional to seller surplus that is given by

((1− r) p− c)Q (v (m)− p) = (1− r)mQ
(
v (m)−m− c

1− r

)
.

This means that the platform’s profit is fully aligned with the seller surplus if the second
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component of (6) is absent. The second component in (6) is proportional to the volume

of transactions.

Therefore, (6) can be loosely interpreted as a weighted sum between seller surplus and

the volume of transactions, in which the relative weight depends on c. This weighted-sum

interpretation suggests that the direction of distortion in platform governance depends

on the level of seller marginal cost. We confirm this intuition in the following proposition:

Proposition 2 (Exogenous proportional fee) Suppose the platform charges an exogenous

proportional fee r. There exist thresholds cl and ch, where 0 < cl ≤ ch, such that:

1. If c < cl, the profit-maximizing governance design induces insufficient on-platform

competition (i.e. mp ≥ mw);

2. If c > ch, the reverse is true (i.e. mp ≤ mw).

Proposition 2 essentially says that, when c is small such that the platform’s profit un-

der a proportional fee is skewed towards seller surplus, the profit-maximizing governance

design induces a lower level of seller competition (i.e. a higher markup) than the welfare-

maximizing design. Conversely, when c is large such that the platform’s profit is skewed

towards the volume of transactions, then it induces a higher level of seller competition

(i.e. a lower markup) than the welfare benchmark instead.

To illustrate the intuition, we again suppose that m is a continuous variable over some

compact interval. Consider first the case in which the sellers’ marginal cost is very small

so that c → 0 (e.g. for sellers of digital products). Recall that welfare-maximization

calls for maximizing transactional value for buyers v (m) and minimizing seller markup

m. Meanwhile, from (6) the profit-maximizing platform maximizes total seller surplus

that can be extracted through the proportional fee, meaning that it seeks to maximize

v(m) and sustain a level of m that is not too low.

When v (m) and m move in opposite directions, the welfare-maximizing design mw

is associated with the lowest possible level of markup. In contrast, the platform faces a

trade-off because raising v requires lowering seller markup, so that the profit-maximizing

design is generally associated with markup level mp ≥ mw, i.e. less intense on-platform

seller competition. So, the level of seller competition and v (m) are both too low under

profit-maximization, as illustrated in the first panel of Figure 2.

When v (m) and m move in the same direction, the profit-maximizing platform faces

no trade-off in this case because it can keep increasing m to increase both v (m) and m as

long as the resulting price is not above the price that maximizes joint industry profit. In

contrast, there is a trade-off from the welfare perspective because increasing v (m) comes

at the cost of an increased price set by sellers. Therefore, welfare-maximization generally

calls for mw ≤ mp. Thus, the profit-maximizing governance design corresponds to a level
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of seller competition that is too low and a level of v (m) that is too high, as illustrated

in the second panel of Figure 2 below.

Figure 2: Distortions in governance design with proportional fees

As c increases above zero, the platform profit and the seller surplus begin to diverge as

can be seen from (6). The divergence reflects that, under proportional fees, the platform

internalizes sellers’ revenue but does not internalize sellers’ marginal cost. A higher

c increasingly skews the platform’s interest away from seller surplus. When c is high

enough, the logic of Proposition 1 applies, whereby the profit-maximizing governance

design is skewed towards maximizing the volume of transactions instead. Examples that

fit this case include platforms that intermediate trades of high-value physical goods e.g.

electronics or luxury products.

4 Analysis: endogenous platform fees

So far we have assumed that the fee level charged by the platform is exogenously fixed.

We now relax this assumption by endogenizing the fee level. Throughout this section,

the welfare benchmark we adopt is a “second-best” one, in which there is a social planner

that fixes the governance design before the platform sets its fee so that the planner is

constrained by the fee-setting response of the profit-maximizing platform. One interpre-

tation is that the social planner regulates only the platform’s governance while leaving

its fees unregulated.12 To facilitate the comparison with the welfare benchmark, in the

derivation of the profit-maximizing design it is useful to think of the platform as choosing

its governance design first and then choosing its fees (given the platform does not obtain

12In Section B of the Online Appendix, we consider yet another welfare benchmark where the social
planner regulates both the platform governance design and the fee level. We show that all the qualitative
insights from this section continue to hold.
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any new information in between these two decisions, this reordering does not affect the

formal analysis).

4.1 Transaction-based fees

Following Section 3.1, the platform’s profit function is given by τQ (v (m)−m− c− τ),

where the per-transaction fee τ is now endogenous. Given Q is log-concave, for each given

m the profit-maximizing fee τ p = τ p (m) is implicitly defined by first-order condition

τ p =
Q (v (m)−m− c− τ p)
Q′ (v (m)−m− c− τ p)

. (7)

Given this, we can write down the platform’s profit function as an indirect function of m:

Π̃ (m) = τ p (m)Q (v (m)−m− c− τ p (m))

To obtain the profit-maximizing governance design, by the envelope theorem we can ig-

nore the indirect effect of m on τ p so mp ≡ arg max Π̃ = arg max {v (m)−m}. Compared

to the baseline case of exogenous transaction fees, maximizing v−m has a two-fold effect

here. First, it allows the platform to raise the number of transactions Q; second, it allows

the platform to reoptimize by increasing its fee, which leads to an even higher profit.

The latter point can be seen from (7), whereby Q being log-concave means that τ p is

increasing in v (m)−m and it is maximized at m = mp.

Given the endogenous transaction fee, the welfare function is given by

W̃ (m) = (τ p (m) +m)Q (v (m)−m− c− τ p (m)) +

∫ v(m)−m−c−τp(m)

−∞
Q (t) dt. (8)

We denote msb ≡ arg max W̃ (m), where the superscript refers to “second-best”. Com-

pared to the welfare benchmark in the baseline case, here the social planner needs to take

into account the possibility that the platform may increase its fee in response to changes

in the governance design.

Proposition 3 (Endogenous per-transaction fees) Suppose a social planner can control

the platform’s governance design, but cannot control the per-transaction fee τ set by the

platform. Then, the planner prefers a design that is associated with less on-platform

competition than the platform (i.e. msb ≥ mp).

Proposition 3 implies that the insights from Proposition 1 continue to hold when

we endogenize the setting of the platform’s fee. The key step in the analysis comes

from the fact that τ p features an incomplete pass-through, i.e. dτp

d(v−m)
∈ (0, 1), so

that the profit-maximizing governance design mp also maximizes the transaction volume
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Q (v (m)−m− c− τ p (m)). The result then follows from the same logic that establishes

Proposition 1: the platform fails to internalize seller surplus and so it is unwilling to

set a design that corresponds to a high seller markup even when doing so increases the

transactional value generated.

Suppose instead the platform sets a proportional fee r ∈ [0, 1] so that its profit function

is given by r
(
m+ c

1−r

)
Q
(
v (m)−m− c

1−r

)
. For each given m, setting r = 0 and r = 1

are obviously sub-optimal as they result in a zero profit for the platform. Therefore,

the platform necessarily sets some rp (m) ∈ (0, 1) implicitly pinned down by first-order

condition dΠ/dr = 0, or

rp =
Q
(
v (m)−m− c

1−rp
)

Q′
(
v (m)−m− c

1−rp
) ((1− rp)2

c
+

rp

m+ c
1−r

)
. (9)

One can verify that the right hand side of (9) is decreasing in rp, so that (9) has a unique

solution. Given this, the platform’s profit function becomes

Π̃ (m) = rp (m)

(
m+

c

1− rp (m)

)
Q

(
v (m)−m− c

1− rp (m)

)
. (10)

The envelope theorem allows us to ignore the indirect effect of m on rp, so that the profit-

maximizing governance design mp ≡ arg max Π̃ (m) here reflects the same underlying

trade-off as its counterpart in Section 3.2. That is, the platform’s profit function can be

loosely interpreted as a weighted sum between seller surplus and transaction volume, in

which the relative weight depends on c.

Denote the welfare function as

W̃ (m) =

(
m+

rp (m)

1− rp (m)
c

)
Q

(
v (m)−m− c

1− rp (m)

)
+

∫ v(m)−m− c
1−rp(m)

−∞
Q (t) dt,

(11)

and msb ≡ arg max W̃ (m). Comparing mp and msb yields the following result that is

analogous to Proposition 2.

Proposition 4 (Endogenous proportional fee) Suppose a social planner can control the

platform’s governance design, but cannot control the proportional fee r set by the platform.

There exist a threshold ch > 0 such that

1. If c → 0, the planner prefers a design that is associated with more on-platform

competition than the platform (i.e. msb ≤ mp).

2. If c > ch, the reverse is true (i.e. msb ≥ mp).
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4.2 Participation fees and two-part tariffs

Thus far, our analysis has focused on platform fees that are transaction-based. How-

ever, in some contexts a platform may find it hard to implement transaction-based fees,

e.g., price comparison websites in housing or rental markets cannot always reliably mon-

itor transactions because deals are typically conducted outside the platform. Instead of

transaction-based fees, these platforms typically charge sellers an up-front participation

fee in the form of listing fees. Notable examples include rental market websites such as

Rightmove and Zoopla in the United Kingdom, or Immobilienscout24 and Immowelt in

Germany. To analyze this arrangement, suppose that the platform charges a participation

fee TS on sellers. It is easy to see that the platform does best by choosing a governance

design that maximizes total seller surplus and then sets TS to fully extract the total seller

surplus. The platform’s profit equals seller surplus

Π̃ (m) = mQ (v (m)−m− c) . (12)

Similar to the logic of Proposition 4 (with small c), the profit-maximizing platform’s

choice of governance design induces a lower level of seller competition than the level that

the planner desires, i.e. mp ≥ msb. Formally:

Corollary 1 (Participation fees) Suppose a social planner can control the platform’s

governance design, but cannot control the participation fee set by the platform. Then, the

planner prefers a design that is associated with more on-platform competition than the

platform (i.e. msb ≤ mp).

Finally, we consider two-part tariffs, whereby the platform charges sellers a participa-

tion fee TS and either (i) a per-transaction fee τ ≥ 0; or (ii) a proportional fee r ≥ 0. We

rule out the possibility of sellers being charged a negative transaction fee as it requires the

platform to subsidize transactions. Such a subsidy is rare in practice, and it is difficult

to implement because each seller can potentially fabricate transactions by fraudulently

purchasing from itself in order to claim the transaction subsidies.

Under a two-part tariff, the profit-maximizing platform sets TS to fully extract the

total seller surplus. The resulting profit function is the sum of participation fees and the

transaction fees collected, that is,

(τ +m)Q (v (m)−m− τ − c) under a per-transaction fee

or (
c

1− r
+m− c

)
Q

(
v (m)−m− c

1− r

)
under a proportional fee

To proceed, denote m∗ = arg maxm∈M(Θ) v (m). Then, define p∗ (m) as the monopoly

price that maximizes the joint industry profit, i.e. it solves p∗ = c+ Q(v(m)−p∗)
Q′(v(m)−p∗) .

20



We first note that the platform uses a participation fee to extract all seller surplus

so that its profit function is proportional to the joint industry profit. When c is low

(m∗ < p∗ (m∗) − c), the platform sets its governance design at m∗ to maximize gross

transactional surplus, and then adjusts τ or r accordingly to implement the corresponding

monopoly price p∗ (m∗). When c is high (m∗ ≥ p∗ (m∗)− c), inducing the monopoly price

would require a subsidy, which is ruled out by the non-negative constraint on fees. In

this case, the platform sets τ = 0 or r = 0 such that its profit function becomes (12) as

in a pure participation fee model, meaning that the profit-maximizing governance design

maximizes seller surplus.

Comparing the profit-maximizing governance design with what the social planner

would choose, we have:

Proposition 5 (Two-part tariff) Suppose a social planner can control the platform’s gov-

ernance design, but cannot control the two-part tariff set by the platform. If m∗ is unique,

then the planner prefers a design that is associated with more on-platform competition

than the platform (i.e. msb ≤ mp).

Even though Corollary 1 and Proposition 5 have utilized the fact that the platform

fully extracts all seller surplus through the participation fee, these results continue to

hold even if sellers face some uncertain fixed cost C, such that the platform does not

fully extract all seller surplus. To see this, consider a simple example in which there are

two possible realizations of seller fixed cost Cl and Ch, where Ch > Cl. Each realization

occurs with probabilities λ and 1−λ respectively, and the actual realization of fixed cost

is not observed by the platform. In case the platform is better off setting the participation

fee at mQ (v (m)− p)−Cl in which sellers participate regardless of the realized cost, then

the platform does not extract all the surplus, and the only amendment to the analysis

is an extra fixed cost term in the platform’s profit expression, which does not affect the

determination of the optimal governance design.

If we endogenize the platform’s choice of fee instrument, then in our baseline setting,

the two-part tariff obviously dominates among the fee instruments analyzed. However, in

reality there are several reasons why a two-part tariff may not be optimal. As mentioned

earlier, if the platform cannot reliably monitor transactions, then a transaction-based fee

component may not be feasible. On the other hand, a participation-based fee component

may give rise to the possibility of a chicken-and-egg coordination problem and leads to

a no-participation outcome. Another possible reason for not using participation fees is

that the sellers may face liquidity constraints in which they could not pay up-front fees

before getting their products sold.
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4.3 Summary

The analysis in this section highlights that the platform’s incentives in choosing its gov-

ernance design are strongly tied to its fee instrument.

Fee instrument:
Per-transaction fees
/ Proportional fees (high seller cost)

Seller participation fees
/ Proportional fees (low seller cost)
/ Two-part tariffs

Platform’s incentive
in setting governance design:

Volume-aligned: to intensify
on-platform competition

Seller-aligned: to relax
on-platform competition

Table 1: Summary

To summarize the main insights, we categorize each of the analyzed platform fee

instruments according to the direction of the welfare distortion in platform governance

design. We group per-transaction fees and proportional fees (when sellers’ marginal cost

is high) as volume-aligned fee instruments. Under these fee instruments, we find that the

profit-maximizing platform prefers to sets its governance design to increase the volume of

transactions, and its choice of governance design is distorted towards intensifying seller

competition.

Likewise, we group seller participation fee, proportional fee (when sellers’ marginal

cost is low), and two-part tariffs charged to sellers as seller-aligned fee instruments. Under

these fee instruments, we find that the profit-maximizing platform’s choice of governance

design is skewed towards increasing the seller surplus that it can extract, and its choice

of governance design tends to induce too little seller competition.

Whether these distortions ultimately result in the platform choosing an excessive or

insufficient level of the governance design depends on the details of how the governance

design affects the transactional value for buyers and the extent of seller competition,

which we explore in Section 5.

5 Applications and implications

We apply the general insights developed in Sections 3 and 4 to three different types of

platform governance designs, corresponding to Examples 1-3 in Section 2.

� Entry regulation and variety choice by platform. In the entry regulation

model of Perloff and Salop (1985) presented in Example 1, admitting more sellers has

two effects: (i) increased product variety; and (ii) reduced sellers’ markup. Both effects

increase welfare and aggregate demand, so that with volume-aligned fee instruments,

both welfare-maximization and profit-maximization call for admitting the highest possible
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number of sellers, n. In contrast, with seller-aligned fee instruments, intensifying seller

competition reduces the platform’s revenue. Therefore, if the markup-reducing effect

dominates, the platform will admit strictly less than n sellers.

To illustrate the implications, consider the example of shopping malls. A shopping

mall typically charges its tenants a two-part tariff consisting of rent payments (participa-

tion fees) and proportional fees on sales revenue of tenants. Proposition 5 thus suggests

that a shopping mall tends to restrict too much the number of competing tenants (in each

given product/service category) from a welfare perspective. One way such restrictions

can be achieved is to impose a high selection criterion for tenants. For example Roppongi

Hill, a prestigious “mini-city” shopping mall located in Tokyo, is well known for its de-

manding quality requirements on its tenants (Boudreau and Hagiu, 2009). Once taken

in, tenants are encouraged to periodically renew the designs of their stores, and the mall

actively replaces underperforming stores or those found not to fit the mall environment.

Another way is to simply offer a contract that grants exclusivity to a single tenant by

committing not to admit the tenant’s competitors into the mall, as documented by Ater

(2015). In this sense, one can also interpret the decision of whether to grant category

exclusivity as an additional non-price governance decision by platforms (Karle at al.,

2019)

Another relevant example is video game platforms, e.g. Sony PS4, Microsoft Xbox

One, and Nintendo. These platforms price their game consoles to buyers at approximately

cost, generating most of the revenue through charging game developers/publishers a two-

part tariff consisting of developer kit fees (i.e. participation fees) and fixed per-game

licensing payment (i.e. constant per-transaction fees). Again, Proposition 5 predicts that

these platforms tend to restrict the number of competing video game titles too much in

order to sustain the profit of major game developers. Consistent with this prediction,

Sony, Microsoft, and Nintendo indeed restrict access to a selected set of game developers

and exclude many others, as documented by Evans et al. (2008).

� Quality control by platform. In online markets, the prevalence of information

asymmetry between buyers and sellers means that platforms need to carefully regulate

the quality of the listed sellers. In the quality control model of Eliaz and Spielger (2011)

presented in Example 2, a search pool with a higher expected quality is analogous to a

lower “effective search cost” for buyers. This reflects that each buyer searches less and

consequently incurs a lower total expected search cost of s/E (qi|qi ≥ a) before reaching

a non-defective (positive-valued) match. Given that E (qi|qi ≥ a) increases with a, a

higher quality standard set by the platform is analogous to reducing effective search cost

of buyers. Therefore, raising the quality standard has two effects: (i) increased buyer

reservation value; and (ii) reduced seller markup.13 Both effects are similar to previous

13Consistent with our formulation, Hui et al. (2019) provide empirical evidence showing that a more
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example. If the markup-reducing effect dominates, with seller-aligned fee instruments,

a platform’s choice of quality standard will be strictly less than the welfare-maximizing

one.

To illustrate the implications, consider the example of PC games distribution plat-

forms such as Steam. With the extensive online user reviews available, prospective con-

sumers can learn the performance of each game if they carefully go through the review

system, which fits our model of observable product defects. Steam charges game devel-

opers a flat proportional fee 30% for each transaction on the platform, while developers

typically have a marginal cost that is close to zero. Therefore, Proposition 4 predicts that

the platform does not have an incentive to set a very strict quality control. Reportedly,

Steam has shown reluctance in imposing simple low cost measures that could significantly

increase the average quality of product pool on offer.14 Our result suggests that an ex-

planation for the reluctance to engage in stricter quality control could be its attempt

to allow PC developers to maintain higher prices and revenues, which the platform can

extract through its proportional fee.

We note that even though our analysis has focused on the role of a high quality

standard in facilitating search (which intensifies seller competition), in some contexts

a high quality standard can plausibly generate countervailing effects that relax seller

competition instead. For instance, if the number of sellers is finite, excluding low-quality

sellers reduces the total number of sellers akin to entry restriction, which relaxes seller

competition. Given that entry regulation has been discussed in Example 1, for simplicity

we have chosen to shut down this channel by assuming that there is a continuum of sellers.

If we amend Example 2 by assuming a finite number of sellers, the overall effect of a high

quality standard on the extent of seller competition generally depends on whether the

search-facilitating effect or the entry-restriction effect dominates.

� On-platform search friction. An online platform often makes design decisions

that influence the ease of buyer search on the platform. These decisions may involve

designing its search and recommendation algorithm, organizing information displayed on

the user interface, or using its recommendation to divert search. Each of these deci-

sions ultimately affects the search cost incurred by buyers to inspect product attributes.

When platforms can costlessly manipulate buyers’ search cost, the question is: would the

platform finds it profitable to obfuscate search, that is, not minimizing buyers’ search

cost?

A natural starting point to analyze search cost manipulations is Wolinsky’s (1986)

random search model, where we can think of the platform governance design a as the

search quality, whereby a high value of a corresponds to a low buyer search cost. In

stringent quality certification policy on ebay has increased the extent of on-platform seller competition
while at the same time increasing the average quality of the seller pool.

14See https://www.rockpapershotgun.com/2017/02/14/steam-curation-user-reviews- xes/
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Wolinsky’s model, lowering search cost has two effects: (i) increased reservation value,

and (ii) intensified seller competition as buyer demand becomes more elastic. Obviously,

welfare-maximization calls for the highest possible search quality (lowest possible search

cost). As for the profit-maximizing platform, the results in Sections 3 and 4 imply

that the platform has no incentive to obfuscate buyer search if its fee instrument is

volume-aligned, consistent with the conventional wisdom (Dinerstein et al., 2019) that

platforms want to limit search frictions and provide buyers with transparent and low

prices. However, the results also imply that a platform would want to obfuscate search if

its fee instrument is seller-aligned instead, consistent with Hagiu and Jullien’s (2011) point

that platforms do not always want to eliminate search frictions.15 Thus, our framework

offers a reconciliation between Hagiu and Jullien (2011)’s point and the conventional

wisdom by showing that the platform’s incentive to reduce search frictions can go in

either direction depending on the fee instrument employed by the platform.

Departing from Wolinsky’s random search model, another interesting setting to an-

alyze search cost manipulations is to allow buyer search to be price-directed, e.g. the

model of Choi et al. (2018) in Example 3.16 In a price-directed search setting, buyers

can observe prices before sampling for product match values. This feature is particularly

relevant in the context of price-comparisons websites, whereby a buyer first looks at a

list of product-price offers before clicking on offers that she wants to spend time inves-

tigating further. In this model, raising the search quality has two effects: (i) increased

gross buyer participation surplus; and (ii) increased seller markups. To understand why

lowering search costs actually relaxes seller competition, consider the following intuition.

A higher search cost means that buyers become less likely to visit another seller after

having visited the first seller. This makes it worthwhile for each seller to set a low price

and attract buyers to visit it first (recall that buyers’ search sequence is influenced by the

prices they observe). Due to this mechanism, a higher search cost makes demand more

price-elastic in a price-directed search environment as opposed to the random search

environment of Wolinsky (1986).17

Notably, given that raising search quality (lower search costs) can increase seller

markups, the welfare-maximizing search quality optimally balances between higher search

quality and avoiding high seller markups. Meanwhile, a profit-maximizing platform with

volume-aligned fee instruments prefers an even lower seller markup than a social planner

15In the current paper the exact mechanism for this result differs from those in Hagiu and Jullien
(2011). In our setup, search diversion or obfuscation relaxes seller competition, increases seller pricing,
and increases the revenue for the intermediary (through a proportional fee) from each consumer. Hagiu
and Jullien shut down this channel by assuming that the sellers are either (i) independent or (ii) interde-
pendent but unable to adjust their prices in response to any diversion. In their model, the intermediary
obtains revenue for each store visit by consumers, and search diversion increases the number of store
visit for each consumer that goes to the intermediary.

16See also Armstrong and Zhou (2011) and Armstrong (2017).
17In the random search model, prices are unobservable before search so that a higher search cost makes

demand less price-elastic instead.
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hence it may choose a search quality that is too low, while a platform with seller-aligned

fee instruments may choose a search quality that is too high. The results thus suggest

that price comparison websites, which typically charge sellers a listing fee for displaying

their offers on the platforms, have a particularly strong incentive to continuously improve

the layout of information in order to facilitate search on the platforms.

6 Extension: Incomplete pass-through and market

coverage

Our baseline analysis has focused on micro-foundations with unit-demand consumers

and complete market coverage, which implies a full pass-through of marginal cost to

price. An alternative formulation is to consider micro-foundations with incomplete market

coverage, which we consider in this section. To keep the exposition brief, we relegate

formal derivations and analysis to Section C of the Online Appendix.

Suppose that in the absence of platform fees, seller competition results in a symmetric

equilibrium price defined implicitly by

p = c+M (p, a) ,

which is analogous to the price equation (1). We assume that the markup function

M (p, a) is differentiable and decreasing in its first argument so that p = p (a) is uniquely

defined for each given c and a. This assumption implies an incomplete pass-through of

marginal cost to price, so that a one unit increase in marginal cost will lead to a less

than one unit increase in the equilibrium price. The aggregate demand remains denoted

as Q (V (a)− p).
By allowing the markup term to depend on price, this demand formulation is consis-

tent with the micro-foundations of incomplete market coverage. To make things concrete,

consider the following amended version of the representative consumer model by Shubik

and Leviatan (1980):18

Example 4 Entry regulation and variety choice in Shubik and Leviatan (1980)

Suppose there is a finite number of n ≥ 2 ex-ante symmetric unit-product sellers. Let

a ∈ {1, ..., n} represents the number of sellers admitted to the platform. A representative

consumer, having access to the admitted sellers, has utility

U = V

a∑
i=1

Qi −
a

2

(1− γ)
a∑
i=1

Q2
i +

γ

a

(
a∑
i=1

Qi

)2
+ Y −

a∑
i=1

piQi.

18Another example that fits is the Singh-Vives-Hackner (2000) model.
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Here, V is the direct utility from product consumption; γ ∈ (0, 1) is a measure of product

differentiation; Qi and pi are the quantity of product i consumed and its price; and

Y −
∑a

i=1 piQi is the residual income of the consumer after the total expenditure on

the products. We extend Shubik and Leviatan’s model by allowing V = V (a) to be

increasing in a, so that the consumer’s utility is increasing in product variety available

on the platform. We can then solve for the consumer’s demand for each product i as

Qi =
1

a

(
V (a)− pi

1− γ
+

γ

1− γ

a∑
i=1

pi
a

)
.

Each seller faces a constant marginal cost c and solves maxpi (pi − c)Qi, implying the

symmetric equilibrium price p = c+M (p, a), where

M (p, a) =

(
1− γ

1− γ/a

)
(V (a)− p) .

The aggregate demand faced by platform is Q =
∑a

i Qi = V (a)− p.

The main insights from Section 3, namely, Propositions 1 and 2, remain unaffected in

this more general environment. The main step to generalize the results is to define the

“composite” markup function

M̄ (a) = M (p (a) , a) ,

which allows us to capture how the markup term changes with a after taking into account

the indirect effect through price. It is easily verified that M̄ (a) is increasing in a if

and only if the original markup function M (p, a) is increasing in its second argument.

Therefore, the analysis in Section 3 continue to hold after replacing the markup functions

with M̄ (a).

Extending further, one can also generalize the functional form of the aggregate demand

function by letting Q = Q (V (a) , p), where Q is strictly increasing in the transactional

value for buyers V and strictly decreasing in the equilibrium product price p. This alter-

native formulation uncouples the one-to-one relationship between the total transaction

volume Q (V (a) , p) with the buyer surplus
∫∞
p
Q (V (a) , t) dt (both of which are increas-

ing in V (a) − p in our baseline setting). Nonetheless, the same monotone comparative

static argument that establishes Propositions 1 and 2.2 remains applicable. If in addition

we assume that the aggregate demand rate of substitution Ψ ≡ ∂Q(V,p)/∂p
∂Q(V,p)/∂V

≤ 0 is (weakly)

decreasing in p, then 2.1 also continues to hold.
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7 Conclusion

An important distinction between a platform (marketplace) business and a traditional

retailer is that the platform hosts groups of sellers that make independent pricing deci-

sions, whereas the retailer sells and prices all its products directly. Without the ability

to determine prices directly, the platform may want to use its governance designs to

influence prices indirectly through the effect of its governance on the extent of seller

competition. The current paper systematically demonstrates how this motive to man-

age seller competition influences a platform’s choice of governance design and drives the

difference between the profit-maximizing and the socially-optimal governance designs.

As summarized in Table 1, the direction in which the platform uses its governance

designs to manage seller competition crucially depends on the revenue-generating model

it employs. Given that prices enter transaction volume and seller surplus in opposite

directions, each platform business can be seen as positioning itself on a continuum of

revenue-generating models. At one end, there is a pure volume-aligned model in which

the platform prefers governance designs that induce more intense seller competition than

the socially optimal design. At the other end, there is a pure seller-aligned model in

which the platform prefers governance designs that induce less intense seller competition

than the socially optimal design.

Naturally, there are other factors that distorts a platform’s choice of governance design

that our framework did not capture. For example, if the cost governance is taken into

account then the classic Spence (1975) distortion arises. Alternatively, if the platform

operator is vertically integrated with some of the on-platform sellers, it may engage in

abusive self-preferencing design decisions, e.g. shunning away rival sellers. Last but not

least, if sellers are asymmetric, the platform distort its search ranking mechanism to

“steer” buyers to low-quality sellers if such sellers offer higher per-transaction revenue

to the platform (Teh and Wright, 2019). To this end, the current paper shows that

distortion can arise even in the absence of governance cost, vertical integration, and

asymmetry among sellers.

To extend our framework, an obvious direction is to investigate how competition

between platforms affects platform governance design. With two rival platforms, it is

natural for each seller to join both intermediaries and for each buyer to join only one.

This leads to a competitive bottleneck equilibrium similar to that analyzed in Armstrong

and Wright (2007). Inter-platform competition implies a transaction volume that is more

elastic (with respect to the net utility offered to buyers) than the case of a monopoly

platform, which induces the platforms to adjust their governance design towards induc-

ing more on-platform competition, so as to achieve a more competitive price on their

respective platforms. Following this intuition, we expect that the introduction of inter-

platform competition shifts each platform business to be more volume-aligned.
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In our model, we focus on the situation in which platforms charge fees only to sellers.

This is a common practice among most online marketplaces.19 An important reason is

that buyers are often uncertain about whether or not they want to buy a product, and they

first inform themselves on the platform about characteristics of the available products.

Thus, charging a participation fee on buyers will deter many buyers. Alternatively, buyer

participation fee may be infeasible if a platform cannot monitor participation decision

by buyers. Nonetheless, in contexts where buyer participation fee is feasible, a natural

question is how does the platform governance design changes when it charges participation

fees on both sides. Belleflamme and Peitz (2018) consider a two-sided participation fee

model, and focus on exploring how the platform fee structure is affected by the extent

of on-platform seller competition. They also provide an informal discussion on how the

platform profit may be affected when platform can make non-price decisions that affect

the extent of the platform competition.

8 Appendix

8.1 Proofs

Proof. (Proposition 1). The result follows from the proof in the main text.

Proof. (Proposition 2). Let Q′ > 0 denote the derivative of Q. Given that Q is strictly increasing, the

inverse function Q−1 exists and is a strictly increasing function. Hence, we have the following identity:

v (m)− p = Q−1

(
Π (m)

rp

)
= Q−1

(
Π (m) /r
c

1−r +m

)
. (13)

Substituting identity (13) and the price equation p = c
1−r +m, the welfare function becomes

W (m) =

(
1− c

c
1−r +m

)
Π (m)

r
+

∫ Q−1

(
Π(m)/r
c

1−r
+m

)
−∞

Q (t) dt. (14)

We first identify conditions under which expression (14) decreases or increases with the term m, holding

Π (m) constant. Since W is differentiable with respect to m (given Q is continuously differentiable), the

corresponding derivative is

dW

dm
|Π =

Π (m) /r(
c

1−r +m
)2

c− Q
(
v (m)− c

1−r −m
)

Q′
(
v (m)− c

1−r −m
)
 ,

where we uses (13). Let

mh ≡ arg max
m
{v (m)−m} and ml ≡ arg min

m
{v (m)−m} ,

both of which are well-defined by compactness of the domain and continuity of v (m)−m. Then:

19See, e.g. Nocke, Peitz and Stahl (2007) and Karle, Peitz, and Reisinger (forthcoming) for two-sided
platform models that similarly focus on seller-side fees.
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• Let cl be the unique solution to

c−
Q
(
v
(
ml
)
−ml − c

1−r

)
Q′
(
v (ml)−ml − c

1−r

) = 0. (15)

The existence and uniqueness of cl follows from the intermediate value theorem given log-concavity

of Q (so that Q/Q′ is increasing). By construction, for all c < cl and for all m ∈M (Θ), we have

c−
Q
(
v (m)−m− c

1−r

)
Q′
(
v (m)−m− c

1−r

) ≤ c− Q
(
v
(
ml
)
−ml − c

1−r

)
Q′
(
v (ml)−ml − c

1−r

) < cl −
Q
(
v
(
ml
)
−ml − cl

1−r

)
Q′
(
v (ml)−ml − cl

1−r

) = 0,

where the inequalities are due to log-concavity of Q and the definition of cl. It follows that
dW
dm |Π < 0 for all c ≤ cl and for all m ∈M (Θ)

• Let ch be the unique solution to

c−
Q
(
v
(
mh
)
−mh − c

)
Q′ (v (mh)−mh − c)

= 0. (16)

The existence and uniqueness of ch follow from the same reasons above. By construction, for all

c ≥ ch and for all m ∈M (Θ), we have

c−
Q
(
v (m)−m− c

1−r

)
Q′
(
v (m)−m− c

1−r

) ≥ c− Q
(
v
(
mh
)
−mh − c

)
Q′ (v (mh)−mh − c)

> ch −
Q
(
v
(
mh
)
−mh − ch

)
Q′ (v (mh)−mh − ch)

= 0.

It follows that dW
dm |Π > 0 for all c > ch and for all m ∈M (Θ).

Consider first the case in which c ≤ cl so that (14) decreases with m. To show mp ≥ mw, by

contradiction suppose instead the reverse is true so that mp < mw. Then, from (14),

W (mw) <

(
1− c

c
1−r +mp

)
Π (mw)

r
+

∫ Q−1

(
Π(mw)/r

c
1−r

+mp

)
−∞

Q (t) dt

≤

(
1− c

c
1−r +mp

)
Π (mp)

r
+

∫ Q−1

(
Π(mp)/r
c

1−r
+mp

)
−∞

Q (t) dt = W (mp) ,

where the first inequality follows from dW
dm |Π < 0 and the initial supposition mp < mw, while the second

inequality from the definition of mp = arg maxm Π (a). So W (mw) < W (mp), which contradicts the

definition of mw. Thus, we must have mp ≥ mw when c < cl.

Consider c ≥ ch. To show mp ≤ mw, by contradiction suppose instead the reverse is true so that

mp > mw. Then, from (14),

W (mw) <

(
1− c

c
1−r +mp

)
Π (mw)

r
+

∫ Q−1

(
Π(mw)/r

c
1−r

+mp

)
−∞

Q (t) dt

≤

(
1− c

c
1−r +mp

)
Π (mp)

r
+

∫ Q−1

(
Π(mp)/r
c

1−r
+mp

)
−∞

Q (t) dt = W (mp) ,

where the first inequality follows from dW
dm |Π > 0 and the initial supposition mp > mw, while the second

inequality from the definition of mp = arg maxm Π (a). So W (mw) < W (mp), which contradicts the
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definition of mw. Thus, we must have mp ≤ mw when c > ch.

Proof. (Proposition 3). From the main text, for each given m the profit-maximizing transaction fee

τp (m) is defined implicitly by

τp =
Q (v (m)−m− c− τp)
Q′ (v (m)−m− c− τp)

.

Given that Q is log-concave, τp has less-than unity pass-through rate for any unit increase in v−m (i.e.
dτp

d(v−m) ∈ [0, 1]). Thus, v (m) −m − τp (m) is increasing in v (m) −m and it is maximized at mp. To

show mp ≤ msb, suppose by contradiction the reverse is true so mp > msb. Then

W
(
msb

)
≤

(
τp
(
msb

)
+msb

)
Q (v (mp)−mp − τp (mp)− c) +

∫ v(mp)−mp−τp(mp)−c

−∞
Q (t) dt

< (τp (mp) +mp)Q (v (mp)−mp − τp (mp)− c) +

∫ v(mp)−mp−τp(mp)−c

−∞
Q (t) dt

= W (mp) ,

where the first inequality comes from the fact that v (m) −m − τp (m) is maximized at mp; while the

second inequality comes from τp being maximized at mp and that mp > msb. So, W
(
msb

)
< W (mp),

which contradicts the definition of msb.

Proof. (Proposition 4). We first consider the case c ≥ ch, where ch > 0 is given by 16. To show

mp ≤ msb, suppose by contradiction mp > msb. We proceed in three steps:

• (Step 1) mp > msb implies v (mp)−mp < v(msb)−msb;

• (Step 2) mp > msb and v (mp)−mp < v(msb)−msb implies rp(msb) ≥ rp (mp);

• (Step 3) rp(msb) ≥ rp (mp) and c ≥ ch implies W̃ (msb) < W̃ (mp), contradicting the definition of

msb.

Step 1. Given c > 0, we can reframe the platform choice of proportional fee r as choosing the

induced final product price p, through the one-to-one correspondence p = m+ c
1−r . Then, for each given

m the platform solves

max
p

(
p− pc

p−m

)
Q (v (m)− p) ,

and leads to the optimal price pp (m) implicitly pinned down by

pp =
Q (v (m)− pp)
Q′ (v (m)− pp)

[
1 +

c

pp −m− c

]
. (17)

If v (mp) < v
(
msb

)
then the initial supposition of mp > msb immediately implies v (mp) − mp <

v
(
msb

)
− msb, and we are done. If instead v (mp) > v

(
msb

)
, then implicit function theorem on (17)

shows ∂p
∂v and ∂p

∂m are both positive and so pp (mp) > pp(msb). From the welfare function

W̃ (m) = (pp (m)− c)Q (v (m)− pp (m)) +

∫ v(m)−pp(m)

−∞
Q (t) dt

we must have

v (mp)− pp (mp) < v
(
msb

)
− pp(msb) (18)

as otherwise msb is not welfare-maximizing. The latter then implies v (mp) −mp < v
(
msb

)
−msb. To
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see this, suppose by contradiction v (mp)−mp ≥ v(msb)−msb. Denote t = v − p and rewrite (17) as

t = v − Q (t)

Q′ (t)

[
1 +

c

v −m− t− c

]
,

where v (mp) − mp ≥ v(msb) − msb and v (mp) > v(msb) would together imply v (mp) − pp (mp) >

v(msb)− pp
(
msb

)
, a contradiction to (18).

Step 2. Claim: For any m2 ≥ m1 such that v (m2)−m2 ≤ v (m1)−m1, we have rp (m1) ≥ rp (m2)

where rp (.) is given by (9). We utilize the standard monotone comparative static result of Milgrom and

Shannon (1994) by first introducing the following definition:

Definition 1 (Single-crossing function). Let δ : R→ R. Then δ (r) is single-crossing from above if for

any r2 ≥ r1 we have δ (r1) ≤ (<) 0 =⇒ δ (r2) ≤ (<) 0.

By the standard monotone comparative static result of Milgrom and Shannon (1994), it suffices to

show that the family of profit functions {Π (m, r)}m∈{m1,m2} obeys single-crossing difference from above,

that is, dΠ
dr (m) is single-crossing from above. This is the same as showing the same property for

δ (m) =
Q
(
v (m)−m− c

1−r

)
Q′
(
v (m)−m− c

1−r

) ( (1− r)2

c
+

r

m+ c
1−r

)
− r.

From the initial supposition of the claim and given strict log-concavity of Q, we have δ (m2) ≤ δ (m1),

so that δ (m2) ≤ 0 whenever δ (m1) ≤ 0, so that dΠ
dr (m) is single-crossing from above with respect to

m ∈ {m1,m2}. Given this claim, we let m1 = msb and m2 = mp, and we yield rp(msb) ≥ rp (mp) as

required.

Step 3. Similar to the proof of Proposition 2, we substitute for platform profit function Π̃ (m) in

(10) to rewrite welfare function as

W̃ (m) =

(
1− c

c
1−rp(m) +m

)
Π̃ (m)

rp (m)
+

∫ Q−1

(
Π̃(m)/rp(m)

c
1−rp(m)

+m

)
−∞

Q (t) dt.

Recall that ch is defined independently of the fee set by the platform, and it is defined such that for all

c > ch and for all m ∈M (Θ), W̃ (m) is increasing in m if Π̃ and rp are held constant. Therefore,

W̃
(
msb

)
<

(
1− c

c
1−rp(msb)

+mp

)
Π̃
(
msb

)
rp(msb)

+

∫ Q−1

(
Π(mw)/rp(msb)

c
1−rp(msb)

+mp

)
−∞

Q (t) dt

≤

(
1− c

c
1−rp(msb)

+mp

)
Π̃ (mp)

rp(msb)
+

∫ Q−1

(
Π(mp)/rp(msb)

c
1−rp(msb)

+mp

)
−∞

Q (t) dt

≤

(
1− c

c
1−rp(mp) +mp

)
Π̃ (mp)

rp(mp)
+

∫ Q−1

(
Π(mp)/rp(mp)

c
1−rp(mp)

+mp

)
−∞

Q (t) dt = W̃ (mp) ,

where the first inequality follows from the construction of ch and the initial supposition mp > mw, while

the second inequality follows from the definition of mp = arg maxm Π (a), and the third inequality follows

from rp(msb) ≥ rp (mp) and the observation that W̃ is decreasing in r. So W̃
(
msb

)
< W̃ (mp), which

contradicts the definition of mw. Thus, we must have mp ≤ mw when c ≥ ch.

Consider the case of c → 0. From (9) we note that c → 0 implies rp → 1, so that rp (m) is

independent of m hence it is also independent of a. Therefore, rp is the same for the profit-maximizing

platform and the social planner, and it follows from Proposition 2 that mp ≥ mw = msb as required.
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Proof. (Corollary 1). Given that the platform fully extracts seller surplus, we use Π (m) = mQ (v (m)−m− c)
so we rewrite the welfare function as:

W (m) = Π (m) +

∫ Q−1( Π(m)
m )

−∞
Q (t) dt.

By contradiction, suppose mp < msb, then

W
(
msb

)
≤ Π (mp) +

∫ Q−1

(
Π(mp)
msb

)
−∞

Q (t) dt

< Π (mp) +

∫ Q−1

(
Π(mp)

mp

)
−∞

Q (t) dt = W (mp) ,

which is a contradiction to the definition of msb.

Proof. (Proposition 5). We focus on a two-part tariff in the form of a seller participation fee and a

per-transaction fee τ because the case of a proportional fee r can be proven similarly. Recall that for

each given m, the profit-maximizing platform chooses

τp (m) = max {0, p∗ (m)−m− c} ,

where p∗ is defined by

p∗ − c =
Q (v (m)− p∗)
Q′ (v (m)− p∗)

,

It is useful to note that p∗ exhibits incomplete pass-through so that dp∗

dv ∈ (0, 1], which implies that

v − p∗ is increasing in v and so v − p∗ is maximized when m∗ ≡ arg maxm v (m∗).

To show mp ≥ msb, suppose by contradiction the reverse is true so that mp < msb. In what follows

we show that this leads to a contradiction. We consider four cases according to the value of τp (m). (i) If

τp (mp) = τp
(
msb

)
= 0, then the analysis is equivalent to the case of pure participation fee so mp < msb

contradicts Corollary 1. (ii) Suppose τp (mp) > τp
(
msb

)
= 0, so that mp = m∗. Then,

W̃
(
msb

)
= msbQ

(
v(msb)−msb − c

)
+

∫ v(msb)−msb−c

−∞
Q (t) dt

≤ msbQ
(
v(msb)− p∗(msb)

)
+

∫ v(msb)−p∗(msb)

−∞
Q (t) dt

≤ msbQ (v (mp)− p∗ (mp)) +

∫ v(mp)−p∗(mp)

−∞
Q (t) dt

< mpQ (v (mp)− p∗ (mp)) +

∫ v(mp)−p∗(mp)

−∞
Q (t) dt = W̃ (mp) .

Here, the first inequality is due to p∗
(
msb

)
− c ≤ msb as implied by τp

(
msb

)
= 0. The second inequality

comes from v (m)−p∗ (m) being maximized at mp = m∗; while the last inequality comes from mp < msb.

So, W̃
(
msb

)
< W̃ (mp), which contradicts the definition of msb being the social planner’s optimal choice.
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(iii) If τp (ms) > τp (mp) = 0,

W̃
(
msb

)
=

(
τp(msb) +msb

)
Q
(
v(msb)−ms − τp(msb)− c

)
+

∫ v(msb)−msb)−τp(msb)−c

−∞
Q (t) dt

< msbQ
(
v(msb)−msb − c

)
+

∫ v(msb)−msb−c

−∞
Q (t) dt

≤ W̃ (mp) ,

where the first inequality comes from τp (mp) = 0 and welfare being strictly decreasing in τ , while the

second inequality is established as in Corollary 1. So W̃
(
msb

)
< W̃ (mp), which contradicts the definition

of msb. (iv) Finally, if τp (mp) > 0 and τp(msb) > 0, so that p∗ (mp)− c > mp and p∗(msb)− c > msb.

Then,

W̃
(
msb

)
=

(
p∗(msb)− c

)
Q
(
v(msb)− p∗(msb)− c

)
+

∫ v(msb)−p∗(msb)

−∞
Q (t) dt

<
(
p∗(msb)− c

)
Q (v(mp)− p∗(mp)− c) +

∫ v(mp)−p∗(mp)

−∞
Q (t) dt

≤ (p∗(mp)− c)Q (v(mp)− p∗(mp)− c) +

∫ v(mp)−p∗(mp)

−∞
Q (t) dt = W̃ (mp) ,

where the first inequality comes from v (m)−p∗ (m) being maximized at mp = m∗ (recall m∗ is unique so

msb > mp implies msb 6= m∗); while the second inequality comes from p∗ being maximized at mp = m∗.

So W̃
(
msb

)
< W̃ (mp), which contradicts the definition of msb.
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Online appendix: Platform governance

Tat-How Teh∗

This online appendix contains omitted details from the main paper and the analysis for the model

extensions discussed in Section 6.

A Derivations of Examples 1-3

This section provides the derivations for the micro-founded examples in Section 2. In what follows we

do not specify the exact fee instrument used by the platform. Instead, we focus on deriving how the

platform’s governance design influences the buyer-seller interactions in each of the applications.

A.1 Entry regulation and variety choice by platform

The model in Example 1 can be summarized by the following sequence of events: (i) The platform

announces the number of admitted sellers a; (ii) Upon observing a, buyers make the decision to join the

platform; (iii) The admitted sellers set their prices, then buyers observe the prices and match values, and

purchase accordingly. We focus on symmetric pure strategy Nash equilibrium where all admitted sellers

set the same price p (for any a chosen by the platform).

Let Q be the number of participating buyers, which is exogenous from sellers’ point of view. To

derive seller pricing, consider a deviating seller i who sets price pi 6= p, its product is purchased if

εi − pi ≥ maxj 6=i,j≤a {εj − p} implying that the demand for seller i’s product is

Qi (pi) = Q× Pr

(
εi − pi ≥ max

j 6=i,j<a
{εj − p}

)
= Q×

∫ ∞
0

(1− F (ε− p+ pi)) dF (ε)a−1,

and profit function (p− c)Qi (pi). Log-concavity of f implies log-concavity of Qi (pi), so that the sym-

metric equilibrium price in this environment can be derived from the usual first-order condition, i.e.

p = c− Qi (pi)

dQi (pi) /dpi
|pi=p = c+

1

a
∫∞

0
f (ε) dF a−1 (ε)

.

As stated in the main text, a buyer will join the platform if E (maxi=1,...,a {εi}) − p > d, so that

Q = G (E (maxi=1,...,a {εi})− p).

A.2 Quality control by platform

The model in Example 2 can be summarized by the following sequence of events: (i) The platform

announces its quality standard a; (ii) Sellers with qi ≥ a join the platform and set their prices; (iii)

Without observing seller prices, buyers decide whether to search given the respective realized buyer-

specific match component x. Buyers that initiate search carry out sequential search. We focus on

symmetric Perfect Bayesian Equilibria (PBE) where all sellers set the same price p. As is standard in

the search literature, buyers keep the same (passive) beliefs about the distribution of future prices on

and off the equilibrium path.

∗Department of Economics, National University of Singapore, E-mail: tehtathow@u.nus.edu.sg
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We first derive buyers’ search strategy for a given a set by the platform. Define the reservation value

V (a) as the solution to

E (qi|qi ≥ a)

∫ ε̄

V

(ε− V ) dF (ε) = s. (A.1)

The left-hand side of (A.1) represents the incremental expected benefit from one more search, while the

right-hand side represents the incremental search cost. There is, at most, one solution to (A.1) since the

left-hand side is strictly decreasing in v.

It is well known from Weitzman (1979) that buyers’ optimal search rule in this environment is

stationary and described by the standard cutoff rule. When searching, each buyer employs the following

strategy: (i) she stops and buys form seller i if the product is non-defective and x+εi−pi ≥ x+V (a)−p;
(ii) she continues to search the next seller otherwise. Following the standard result, the buyer’s expected

surplus from initiating a search is x + V (a) − p. Then, buyers with x < p − V (a) expect no surplus

gain from costly search and thus will not join the platform, while buyers with x ≥ p− V (a) will do so.

Provided that search cost is sufficiently small, there is a symmetric price equilibrium where a strictly

positive measure of buyers join the platform.

Compared to a standard search model, notice from (3) that a search pool with a higher expected

quality E (qi|qi ≥ a) is analogous to a lower “effective search cost” for buyers. This reflects that each

buyer searches less and consequently incurs a lower total expected search cost of s/E (qi|qi ≥ a) before

reaching a non-defective match. Given that E (qi|qi > a) increases with a, a higher quality standard set

by the platform is analogous to reducing the effective search cost of buyers. Thus, it follows that V (a)

is an increasing function of a.

From the buyer search rule above, derivation of demand is straightforward. The mass of buyers

initiating search is

Q = 1−G (p− V (a)) ,

which is exogenous from each firm’s point of view. Conditional on these buyers, the demand of a deviating

firm i with type qi follows the standard search model and it is given by

qi (1− F (V (a)− p+ pi))

∞∑
z=0

F (V (a))
z

=

(
1− F (V (a)− p+ pi)

1− F (V (a))

)
qi.

The log-concavity assumption on 1− F ensures that the usual first-order condition determines a unique

optimal price. The symmetric equilibrium price is given by

p = c+
1− F (V (a))

f (V (a))
.

Note 1− F being log-concavity implies that M (a) is decreasing in a. This reflects that a higher quality

standard reduces the effective search cost of buyers, which leads to a more elastic product demand.

A.3 On-platform search cost

The model in Example 3 can be summarized by the following sequence of events: (i) The platform sets

and announces its search design a (recall that on-platform search cost s is decreasing in a); (ii) Sellers set

their prices; (iii) Without observing seller prices and any product match values, buyers decide whether to

join the platform given their respective realized joining cost d; (iv) Buyers that join the platform observe

their prior match values and prices of each product, and search sequentially. We focus on symmetric

pure-strategy Nash equilibrium where all sellers set the same price p. The exposition below follow closely

that by Choi et. al. (2018), and we refer readers to their paper for further details.

2



To characterize a buyer’s optimal search strategy, we can again utilize Weitzman (1979)’s solution

by first defining the reservation value z∗ as∫ z̄

z∗
(zi − z∗) dH (zi) = s (a) .

After realizing prior match values (ε1, ..., εn) and observing prices (p1, ..., pn), a buyer’s search strategy

can be characterized as follows: (i) she inspects sellers in the descending order of εi + z∗ − pi; (ii) let

N be the set of sellers the buyer has visited so far, then she stops and takes the best available option

by the point if maxi∈N {εi + zi − pi} > maxj /∈N {εj + z∗ − pj}; (iii) she continues searching otherwise.

From Weitzman’s solution, Theorem 1 in Choi et al. (2018) provides a way to characterize each buyer’s

eventual purchase decision:

Remark 1 (Choi et al., 2018) For each i, define wi ≡ εi + min {zi, z∗}. Given (ε1, ..., εn), (z1, ..., zn),

and (p1, ..., pn), a buyer eventually purchases product i if and only if wi − pi > wj − pj for all j 6= i.

As a direct corollary of Remark 1, it can be shown that the expected surplus from participating in

the market is E (maxi=1,...,n {wi − pi}). A buyer joins the platform if her joining cost is lower than the

expected surplus. This implies that in the symmetric price equilibrium to be characterized below, the

mass of buyers joining the platform is Q = G (E (maxi=1,...,n {wi})− p).
Let H̄ denote the cdf of the new random variable wi ≡ εi+ min {zi, z∗} that is common for all i, and

let h̄ denotes the corresponding density function. Consider a deviating seller i who sets pi 6= p. Owing

to Remark 1, we can write down seller i’s demand function as

Pr

(
wi − pi ≥ max

j 6=i
{wj − p}

)
=

∫ ∞
−∞

(
1− H̄ (w − p+ pi)

)
dH̄n−1(w).

It can be shown that the demand function is log-concave in pi provided that the variance of εi is large

enough. Consequently, the symmetric equilibrium price in this environment can be derived from the

usual first-order condition as p = c+M (a), where

M (a) ≡ 1/n∫∞
−∞ h̄ (w) dH̄n−1(w)

.

Note that the distribution function H̄ (wi) is a function of a because the definition of variable wi depends

on z∗, which in turns depends on s (a). Choi et al. show that the distribution of wi becomes more

“dispersed” when s (a) increases, which allows them to show that M (a) is decreasing in search cost,

meaning that a higher search cost intensifies seller competition.

B Alternative welfare benchmark

In this section, we replicate the analysis in Section 4 of the main text by considering the alternative

welfare benchmark where the social planner controls both the fee level charged by the platform as well

as the governance design.

� Per-transaction fee. The social planner sets per-transaction fee at τ = 0 to minimize deadweight

losses, so that the welfare function in (8) becomes

W̃ (m) = mQ (v (m)−m− c) +

∫ v(m)−m−c

−∞
Q (t) dt. (B.1)

Then:
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Proposition B.1 If a social planner can control the platform’s governance design and the per-transaction

fee τ , then the planner prefers a design that is associated with less on-platform competition than the plat-

form (i.e. mp ≤ msb).

Proof. By contradiction, suppose instead mp > msb. We have

W̃
(
msb

)
≤ msbQ (v (mp)−mp − c) +

∫ v(mp)−mp−c

−∞
Q (t) dt

< mpQ (v (mp)−mp − c) +

∫ v(mp)−mp−c

−∞
Q (t) dt

= W̃ (mp) ,

where the first inequality follows from the definition of mp in (4), while the second inequality follows

from the initial supposition that mp > mw. Obviously, W (mw) < W (mp) contradicts the definition of

msb, and so we must have mp ≤ msb.

� Proportional fee. The social planner sets percentage fee at r = 0 to minimize deadweight losses,

so that the welfare function in (11) becomes (B.1). Then:

Proposition B.2 If a social planner can control the platform’s governance design and the proportional

fee r, then:

1. If c → 0 then the planner prefers a design that is associated with more on-platform competition

than the platform (i.e. mp ≥ msb).

2. If c ≥ ch then the reverse is true (i.e. mp ≤ msb).

Proof. In this proof, it is useful to label mp (r) as the profit-maximizing design for each given r, and

the profit-maximizing r as rp ≥ 0. We first prove the following claim:

Claim: mp (r) is decreasing in r and becomes independent of r if c→ 0. Write

Π (m, r) = r

(
m+

c

1− r

)
Q

(
v −m− c

1− r

)
We want to show arg maxm Π (m, r) is decreasing in r. By Milgrom and Shannon (1994), showing

arg maxm Π (m, r) is decreasing in r is equivalent to showing that the family of profit functions {Π (m, r)}r∈[0,1]

obeys single-crossing difference from above, that is: for all m1 ≤ m2,

δ (r) ≡ Π (m2, r)−Π (m1, r)

is single-crossing from above with respect to r (See the proof of Proposition 4 for the definition of

single-crossing functions). One can verify that the sign of δ (r) is the same as the sign of the following

expression:

(m2 −m1) +

(
m1 +

c

1− r

)1−
Q
(
v (m1)−m1 − c

1−r

)
Q
(
v (m2)−m2 − c

1−r

)
 . (B.2)

If v (m1) −m1 ≤ v (m2) −m2 then δ (r) ≥ 0 for all r, so that single-crossing condition holds trivially.

Suppose instead v (m1) −m1 ≥ v (m2) −m2, then the second component in (B.2) is negative and it is

decreasing in r because log-concavity of Q implies that
Q(v(m1)−m1− c

1−r )
Q(v(m2)−m2− c

1−r )
is increasing in r whenever

v (m1) − m1 ≥ v (m2) − m2. Hence, (B.2) is decreasing in r in this case, implying that the single-

crossing condition holds. Combining both cases, we conclude that δ (r) is indeed single-crossing so that

4



mp (r) = arg maxm Π (m, r) is decreasing in r. Moreover, we note from (B.2) that if c → 0, then δ (r)

becomes independent of r.

We are now ready to prove the proposition. Consider first the case of c ≥ ch, where ch is defined

by (16). From Proposition 2, if we let r = 0 in the proposition statement, then we know msb ≥ mp (0).

Therefore, it remains to show mp (0) ≥ mp (rp), which follows directly from the claim above that mp (r)

is decreasing in r and rp ≥ 0. When c→ 0, mp (r) becomes independent of r so limc→0m
p (rp) = mp (0),

while Proposition 2 implies mp (0) ≥ msb when c ≤ cl (where cl > 0 is defined by (15)) as required.

� Participation fee and two-part tariff. Given that a participation fee is a welfare-neutral

lump-sum transfer, Corollary 1 remains valid under this alternative welfare benchmark. Consider instead

two-part tariffs. The social planner again sets the transaction fee component (either a per-transaction

fee or a percentage fee) at zero so that the welfare function is (B.1). Then:

Proposition B.3 If a social planner can control the platform’s governance design and the two-part

tariff charged by the platform, then the planner prefers a design that is associated with more on-platform

competition than the platform (i.e. mp ≥ msb).

Proof. Denote m∗ ≡ arg max v (m) and p∗ (m) implicitly defined by p∗ − c = Q(v(m)−p∗(m))
Q′(v(m)−p∗(m)) . Consider

first the case that m∗ ≤ p∗ (m∗)− c. Then the profit-maximizing platform chooses mp = m∗, and τ that

satisfies first-order condition

τ +m∗ =
Q (v (m∗)− c− τ −m∗)
Q′ (v (m∗)− c− τ −m∗)

under per-transaction fee

or r that satisfies

c

1− r
+m∗ − c =

Q
(
v (m∗)− c

1−r −m
∗
)

Q′
(
v (m∗)− c

1−r −m∗
) under proportional fee.

These fees induce the monopoly price level p∗ (m∗), and the fees must be non-negative given the sup-

position m∗ ≤ p∗ (m∗) − c. To show mp ≥ msb, suppose instead the reverse is true so that mp < msb.

Given that τsb = rsb = 0, we have

W̃
(
msb

)
≤ msbQ

(
v (mp)−msb − c

)
+

∫ v(mp)−msb−c

−∞
Q (t) dt

< mpQ (v (mp)−mp − c) +

∫ v(mp)−mp−c

−∞
Q (t) dt

= W̃ (mp) ,

where the first inequality follows from the definition of mp = m∗, while the second inequality follows

from the initial supposition that mp < msb and that dW̃/dm ≤ 0. Therefore, W̃
(
msb

)
≤ W̃ (mp), which

contradicts the definition of msb. Hence, we must have mp ≥ msb. In the case where m∗ > p∗ (m∗)− c,
p∗ (m∗) cannot be implemented with τ ≥ 0 or r ≥ 0. The log-concavity assumption on Q implies that

the platform does best by setting τ = 0 or r = 0, so that the platform profit is equivalent to the seller

surplus, and the result follows from Corollary 1.
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C Extension: Incomplete pass-through and market

coverage

In this section, we extend the framework in Section 2 by generalizing the markup function M = M (p, a)

and the aggregate demand function Q.

Following the description in Section 6, we write the symmetric equilibrium price equation in (1) as

p = c+M (p, a) . (C.1)

The markup function M (p, a) is continuous with respect to a for all a ∈ Θ, while it is decreasing and

differentiable with respect to p. The latter assumption ensures that a unique p is defined by (C.1) for

each given c and a, so that we can write p = p (a).

Throughout, instead of working directly with function M (p, a), it is simpler to work with the “com-

posite markup function” defined by

M̄ (a) ≡M (p (a) , a) ,

where p (a) is given by (C.1). We have the following properties M̄ (a):

• M̄ (a) is decreasing in c:

dM̄

dc
=
dM

dp

dp

dc
=

dM
dp

1− dM
dp

∈ [−1, 0] .

• M̄ (a) is increasing in a if M is increasing in a, and conversely M̄ is decreasing in a if M is

decreasing in a. To see this:

dM̄

da
=
dM

dp

dp

da
+
dM

da
=

1

1− dM
dp

dM

da
.

As stated in Section 6, we consider two possibilities for the aggregate demand function, each with

the following associated assumptions.

• Case 1, Q = Q (V (a)− p): As in the baseline model, Q (.) is strictly increasing, continuously

differentiable, and log-concave.

• Case 2, Q = Q (V (a) , p): As stated in the main text, Q (., .) is strictly increasing in its first argu-

ment, strictly decreasing in its second argument, log-concave and twice continuously differentiable

in both arguments.

C.1 Exogenous per-transaction fee

For each given per-transaction fee τ and governance design a, we write the symmetric equilibrium price

equation in (C.1) as p = p (a) that implicitly solves

p = c+ τ +M (p, a) .

Denote M̄ (a) ≡M (p (a) , a). We prove the following two propositions that are analogous to Proposition

2.

Proposition C.1 Suppose Q = Q (V (a)− p) and the platform charges an exogenous per-transaction fee

τ . The profit-maximizing governance design induces excessive on-platform competition (i.e. M̄ (ap) ≤
M̄ (aw)).
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Proof. Given the aggregate demand function, the platform’s profit is

Π (a) = τQ
(
V (a)− M̄ (a)− τ − c

)
.

We have ap ≡ arg maxa Π = arg maxa
{
V (a)− M̄ (a)

}
. The welfare function is

W (a) =
(
τ + M̄ (a)

)
Q
(
V (a)− M̄ (a)− c− τ

)
+

∫ V (a)−M̄(a)−c−τ

−∞
Q (t) dt.

Let aw ≡ arg maxaW (a). The result follows from the proof of Proposition 1.

Proposition C.2 Suppose Q = Q (V (a) , p) and the platform charges an exogenous per-transaction fee

τ . The profit-maximizing governance design induces excessive on-platform competition (i.e. M̄(ap) ≤
M̄(aw)).

Proof. Given the aggregate demand function, the platform’s profit is

Π (a) = τQ
(
V (a) , M̄ (a) + τ + c

)
.

We have ap ≡ arg maxa Π = arg maxaQ
(
V (a) , M̄ (a) + τ + c

)
.The welfare function is

W (a) =
(
τ + M̄ (a)

)
Q
(
V (a) , M̄ (a) + τ + c

)
+

∫ ∞
M̄(a)+τ+c

Q (V (a) , t) dt.

Let aw ≡ arg maxaW (a). Suppose by contradiction M̄(ap) > M̄(aw), which implies V (ap) > V (aw) by

the definition of ap. The welfare function is

W (aw) =
(
τ + M̄(aw)

)
Q
(
V (aw), M̄(aw) + c+ τ

)
+

∫ ∞
M̄(aw)+τ+c

Q (V (aw), t) dt

<
(
τ + M̄(ap)

)
Q
(
V (aw), M̄(aw) + c+ τ

)
+

∫ ∞
M̄(ap)+τ+c

Q (V (aw), t) dt

<
(
τ + M̄(ap)

)
Q
(
V (ap), M̄(ap) + c+ τ

)
+

∫ ∞
M̄(ap)+τ+c

Q (V (ap), t) dt

= W (ap),

where the first inequality follows from the following inequality that utilizesQ (., .) being strictly decreasing

in its second argument:

(
M̄(ap)− M̄(aw)

)
Q
(
V (aw), M̄(aw) + c+ τ

)
−
∫ M̄(ap)+τ+c

M̄(aw)+τ+c

Q (V (aw), t) dt

≥
(
M̄(ap)− M̄(aw)

)
Q
(
V (aw), M̄(aw) + c+ τ

)
−
∫ M̄(ap)+τ+c

M̄(aw)+τ+c

Q
(
V (aw), M̄(aw) + τ + c

)
dt

= 0,

while the second inequality follows from V (ap) > V (aw) and the definition of ap ≡ arg maxQ. Hence,

we have W (ap) > W (aw), contradicting the definition of aw.
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C.2 Exogenous proportional fee

For each given proportional fee r and governance design a, we write the symmetric equilibrium price

equation in (C.1) as p = p (a) that implicitly solves

p =
c

1− r
+M (p, a) . (C.2)

Again, we define M̄ (a) ≡ M (p (a) , a). We prove the following two propositions that are analogous to

Proposition 2.

Proposition C.3 (Exogenous proportional fee) Suppose Q = Q (V (a)− p) and the platform charges an

exogenous proportional fee r. There exist thresholds cl and ch, where 0 < cl ≤ ch, such that:

1. If c < cl, the profit-maximizing governance design induces insufficient on-platform competition

(i.e. M̄ (ap) ≥ M̄ (aw));

2. If c > ch, the reverse is true (i.e. M̄ (ap) ≤ M̄ (aw)).

Proof. The platform’s profit and the welfare function are

Π (a) = rpQ (V (a)− p)

W (a) = (p− c)Q (V (a)− p) +

∫ V (a)−p

−∞
Q (t) dt,

where p = p (a) is given by (C.2). After substituting in Π (a) into the the welfare function, the proof

proceeds similarly to Proposition 2 up until the step where we establish how the (substituted) welfare

function changes with markup (while holding Π constant). We have

dW

dM̄
|Π =

Π (a) /r(
c

1−r + M̄ (a)
)2

c− Q
(
V (a)− c

1−r − M̄ (a)
)

Q′
(
V (a)− c

1−r − M̄ (a)
)
 .

Define ah ≡ arg maxa {V (a)} and al ≡ arg mina
{
V (a)− M̄ (a) |c=0

}
. Then:

• Let cl be the unique solution to c− Q(v(al)−M̄(al)|c=0− c
1−r )

Q′(v(al)−M̄(al)|c=0− c
1−r )

= 0. The existence and uniqueness of cl

follows from the intermediate value theorem given log-concavity of Q (so that Q/Q′ is increasing)

and Q being continuously differentiable. By construction, for all c < cl and for all a ∈ Θ, we have

c−
Q
(
V (a)− c

1−r − M̄ (a)
)

Q′
(
V (a)− c

1−r − M̄ (a)
) ≤ c−

Q
(
V (a)− c

1−r − M̄ (a) |c=0

)
Q′
(
V (a)− c

1−r − M̄ (a) |c=0

)
≤ c−

Q
(
V
(
al
)
− c

1−r − M̄
(
al
)
|c=0

)
Q′
(
V (al)− c

1−r − M̄ (al) |c=0

)
< cl −

Q
(
V
(
al
)
− cl

1−r − M̄
(
al
)
|c=0

)
Q′
(
V (al)− cl

1−r − M̄ (al) |c=0

) = 0,

where the first inequality follows from M̄ being decreasing in c, the second inequality follows from

the definition of al, while the last inequality follows from c < cl. Therefore, dW
dM̄
|Π < 0 for all

c < cl and a ∈ Θ.
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• Let ch be the unique solution to c− Q(v(ah)− c
1−r )

Q′(v(ah)− c
1−r )

= 0. The existence and uniqueness of ch follows

from the same reasons as before. By construction, for all c > ch and a ∈ Θ, we have

c−
Q
(
V (a)− c

1−r − M̄ (a)
)

Q′
(
V (a)− c

1−r − M̄ (a)
) ≥ c−

Q
(
V (a)− c

1−r

)
Q′
(
V (a)− c

1−r

)
≥ c−

Q
(
v
(
ah
)
− c

1−r

)
Q′
(
v (ah)− c

1−r

)
> ch −

Q
(
v
(
ah
)
− ch

1−r

)
Q′
(
v (ah)− ch

1−r

) = 0,

where the first inequality follows from M̄ ≥ 0, the second inequality follows from the definition of

ah, while the last inequality follows from c > ch. Therefore, dW
dM̄
|Π > 0 for all c > ch and a ∈ Θ.

Using the defined thresholds cl and ch, the remaining parts of the proof are the same as the proof of

Proposition 2.

As mentioned in the main text, for the case where Q = Q (V (a) , p) it is useful to introduce the

following assumption:

In order to apply the same monotone comparative static arguments that establish our results, we

require the following assumption on the demand function:

Assumption 1 For all V and p, the ratio Ψ ≡ ∂Q(V,p)/∂p
∂Q(V,p)/∂V ≤ 0 is (weakly) decreasing in p.

Assumption 1 is obviously satisfied in the baseline analysis where Q (V (a) , p) = Q (V (a)− p), in

which Ψ = −1. Another sufficient condition for the assumption is for Q (V, p) to be sub-modular and

concave in p, so that the numerator of Ψ increases with p while the denominator decreases with p. A

micro-foundation where the assumption holds is entry regulation by platform in the Perloff-Salop model

with a binding outside option, provided that the density function of product match values is sufficiently

log-linear.

Proposition C.4 (Exogenous proportional fee) Suppose Q = Q (V (a) , p) and ∂Q(V,p)
∂V is log-concave

in p. If the platform charges an exogenous proportional fee r. There exist thresholds cl and ch, where

0 < cl ≤ ch, such that:

1. If c < cl and Assumption 1 holds, the profit-maximizing governance design induces insufficient

on-platform competition (i.e. M̄ (ap) ≥ M̄ (aw));

2. If c > ch, the reverse is true (i.e. M̄ (ap) ≤ M̄ (aw)).

Proof. The platform’s profit and the welfare function are

Π (a) = rpQ (V (a) , p)

W (a) = (p− c)Q (V (a) , p) +

∫ ∞
p

Q (V (a) , t) dt,

where p = p (a) is given by (C.2). From

Π (a) = r

(
c

1− r
+ M̄ (a)

)
Q

(
V (a) ,

c

1− r
+ M̄ (a)

)
,
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we let Q−1
1 be the inverse function of Q with respect to the first argument to write

V (a) = Q−1
1

(
Π (a) /r
c

1−r + M̄ (a)
;

c

1− r
+ M̄ (a)

)
.

Then, rewrite the welfare function as

W (a) =

(
1− c

c
1−r + M̄ (a)

)
Π (a)

r
+

∫ ∞
c

1−r +M̄(a)

Q

(
Q−1

1

(
Π (a) /r
c

1−r + M̄ (a)
;

c

1− r
+ M̄ (a)

)
, t

)
dt.

Holding Π (a) constant, the derivative of W (a) with respect to M̄ (a) is

dW

dM̄
|Π =

Π

p2r

c−
∫∞

c
1−r +M̄

∂Q(V,t)
∂V dt

∂Q(V, c
1−r +M̄)
∂V dt

−

Q(V, c

1− r
+ M̄

)
+

∫ ∞
c

1−r +M̄

∂Q (V, t)

∂V

 ∂Q(V, c
1−r +M̄)
∂p

∂Q(V, c
1−r +M̄)
∂V

 dt


︸ ︷︷ ︸

≥0

 ,

where one can use Assumption 1 to show

∫ ∞
c

1−r +M̄

∂Q (V, t)

∂V

 ∂Q(V, c
1−r +M̄)
∂p

∂Q(V, c
1−r +M̄)
∂V

 dt ≥
∫ ∞

c
1−r +M̄

∂Q (V, t)

∂V

(
∂Q(V,t)
∂p

∂Q(V,t)
∂V

)
dt

=

∫ ∞
c

1−r +M̄

∂Q (V, t)

∂p
dt = −Q

(
V (a) ,

c

1− r
+ M̄

)
.

• To establish threshold cl, we note that ∂Q(V,p)
∂V being log-concave in p implies that

φ1 (a, c) ≡

∫∞
c

1−r +M̄(a)
∂Q(V (a),t)

∂V dt

∂Q(V (a), c
1−r +M̄(a))
∂V dt

is decreasing in c. For each c, denote

al (c) = arg min
a
φ1 (a, c) ,

then φ1

(
al (c) , c

)
is decreasing in c by envelope theorem for arbitrary choice set Θ (Milgrom and

Segal, 2002) given that the objective function φ1 (a, c) is differentiable in c. Then, we can define

cl as the unique solution to

c− φ1

(
al (c) , c

)
= 0.

The existence and uniqueness of cl follows from the intermediate value theorem. By construction,

for all c < cl and for all a ∈ Θ, we have

c− φ1 (a, c) ≤ c− φ1

(
al (c) , c

)
< cl − φ1

(
al
(
cl
)
, cl
)

= 0,

Hence, dW
dM̄
|Π < 0 for all c < cl and a ∈ Θ.
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• To establish threshold ch, let

φ2 (a, c) ≡ φ1 (a, c)+Q

(
V (a) ,

c

1− r
+ M̄ (a)

)
+

∫ ∞
c

1−r +M̄(a)

∂Q (V (a) , t)

∂V

 ∂Q(V (a), c
1−r +M̄(a))
∂p

∂Q(V (a), c
1−r +M̄(a))
∂V


︸ ︷︷ ︸

≤0

.

For each c, denote

ah (c) = arg max
a

{
φ1 (a, c) +Q

(
V (a) ,

c

1− r
+ M̄ (a)

)}
,

then φ1

(
ah (c) , c

)
+Q

(
V
(
ah (c)

)
, c

1−r + M̄
(
ah (c)

))
is decreasing in c by envelope theorem (Mil-

grom and Segal, 2002). Then, we can define ch as the unique solution to

c− φ1

(
ah (c) , c

)
−Q

(
V
(
ah (c)

)
,

c

1− r
+ M̄

(
ah (c)

))
= 0.

The existence and uniqueness of ch follows from the intermediate value theorem as before. By

construction, for all c > ch and for all a ∈ Θ, we have

c− φ2 (a, c) ≥ c− φ1 (a, c)−Q
(
V (a) ,

c

1− r
+ M̄ (a)

)
≥ c− φ1

(
ah (c) , c

)
−Q

(
V
(
ah (c)

)
,

c

1− r
+ M̄

(
ah (c)

))
> ch − φ1

(
ah
(
ch
)
, ch
)
−Q

(
V
(
ah
(
ch
))
,
ch

1− r
+ M̄

(
ah
(
ch
)))

= 0.

Hence, dW
dM̄
|Π > 0 for all c > ch and a ∈ Θ.

Using the defined thresholds cl and ch, the remaining parts of the proof are the same as the proof of

Proposition 2.

11


	Introduction
	Relation to the literature

	Model setup
	Micro-foundations

	Baseline analysis: exogenous platform fees
	Per-transaction fees
	Proportional fees

	Analysis: endogenous platform fees
	Transaction-based fees
	Participation fees and two-part tariffs
	Summary

	Applications and implications
	Extension: Incomplete pass-through and market coverage
	Conclusion
	Appendix
	Proofs

	Derivations of Examples 1-3
	Entry regulation and variety choice by platform
	Quality control by platform
	On-platform search cost

	Alternative welfare benchmark
	Extension: Incomplete pass-through and market coverage
	Exogenous per-transaction fee
	Exogenous proportional fee


